
Synchronous Dataflow Programming
CS684: Embedded Systems

Topic 5

Paritosh Pandya

Indian Institute of Technology, Bombay

February 14, 2021

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 1 / 15



Multi-mode controller using switch

A node can be in exactly one mode at each clock cycle.

Equations of the currently active mode are applied.

Each output and internal variable has exactly one equation in each
mode.

Each mode acts as a name space and clock domain.
All pre(x) values are stored in a mode local copy. last(x) variables are
global and shared between modes.

reset blocks can be used to reset the equations under specified
conditions.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 2 / 15



Mixed language for Multi-mode Complex Control

Finite State Automata with data flow equations.
Hybrid Program

States are modes.

Each state has an associated set of equations.

Transitions specify conditions for state (i.e. mode) change.

Complex control is organized as automata with hierarchy, concurrency
and sharing of flows.

Dataflow and fsm control can be freely mixed and nested.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 3 / 15



First Example

node myautomaton(r,c,e:bool) returns (act:int)

let

automaton

state Idle

do act = 0

until r and c then Active

| r and not c then Wait

state Wait

do act = 1

until c then Active

state Active

do act = 2

until e then Idle

end

tel

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 4 / 15



First Example Diagram

st I I I W W W A I I I A ...

r 0 0 1 0 1 0 0 0 0 1 0 ...

c 0 1 0 0 0 1 0 0 0 1 0 ...

e 0 1 0 0 0 0 1 0 0 0 0 ...

act 0 0 0 1 1 1 2 0 0 0 2 ...

ns I I W W W A I I I A A ...

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 5 / 15



Automata under Weak transitions: until

Structure of Automaton

A set of states with transitions between them.

One set of equations (i.e. mode block) for each state.

A set of transitions going out of each state (keyword until or unless)

Each transition has a guard giving condition under which it is taken
and target state.

Execution of automaton: In each cycle

Start State:

With weak transitions, the start state is the Active state.

Equations of the active state are applied.

Guard is evaluated AFTER evaluating the active state equations.
Guard can refer to variables defined by the equations.
If guard true transition is taken and next state changed.

Next State: this is the start state of the next cycle.
P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 6 / 15



State as Mode Block

node myautomaton(i : int; c: bool) returns (o: int; stup:bool)

let

automaton

state Up

do o = 60 -> i+1; stup = true;

until c continue Down

state Down

do o = 150 -> -2 * i; stup = false;

until c continue Up

end

tel

ST ...

i 4 4 3 3 3 3 3 3 3 3 3 3 3 ...

c 0 0 0 1 0 0 0 1 0 0 1 0 0 ...

o 60 5 4 4 150 −6 −6 −6 4 4 4 −6 −6 ...

stup 1 1 1 1 0 0 0 0 1 1 1 0 0 ...

NS ...

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 7 / 15



Same automaton with reset transitions

node myautomaton(i : int; c: bool) returns (o: int; stup:bool)

let

automaton

state Up

do o = 60 -> i+1; stup = true;

until c then Down

state Down

do o = 150 -> -2 * i; stup = false;

until c then Up

end

tel

ST ...

i 4 4 3 3 3 3 3 3 3 3 3 3 3 ...

c 0 0 0 1 0 0 0 1 0 0 1 0 0 ...

o 60 5 4 4 150 −6 −6 −6 60 4 4 150 −6 ...

stup 1 1 1 1 0 0 0 0 1 1 1 0 0 ...

NS ...

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 8 / 15



Principles

A then transition resets the mode block on entry to the state,

A continue transition enters the states mode block WITHOUT
resetting.

Each state is a mode with its own name space and clock domain.

pre(x) in a mode refers to the previous value of x when the
automaton was in this state.

last x refers to global variable x shared between states. Its value is
value of x in previour cycle (irrespective of the state).

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 9 / 15



State as Mode block

node myautomaton() returns (y:int; stup:bool; v:int)

var last x:int = 2;

let

y = x;

automaton

state Up

var w:int;

do x = (last x) + 1; stup = true;

w = 0 -> pre(w)+1; v=w;

until x >= 5 continue Down

state Down

var w:int;

do x = (last x) - 1; stup = false;

w = 50 -> pre(w)-2; v=w;

until x <= 3 continue Up

end

tel

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 10 / 15



State as Mode block (cont)

node myautomaton() returns (y:int; stup:bool; v:int)

var last x:int = 2;

let

y = x;

automaton

state Up

var w:int;

do x = (last x) + 1; stup = true;

w = 0 -> pre(w)+1; v=w;

until x >= 5 continue Down

state Down

var w:int;

do x = (last x) - 1; stup = false;

w = 50 -> pre(w)-2; v=w;

until x <= 3 continue Up

end

tel

y 3 4 5 4 3 4 5 4 3 4 ...

stup 1 1 1 0 0 1 1 0 0 1 ...

v 0 1 2 50 48 3 4 46 44 5 ...

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 11 / 15







Concurrent Automata

node myautomaton () returns (ping,pong : bool)

let

automaton -- A_ping automaton -- A_pong

state S1 state S1

do ping = true do pong = false

until true then S2 until ping then S2

state S2 state S2

do ping = false do pong = true

until pong then S1 until true then S1

end; end

tel

ping 1 0 1 0 1 ...

pong 0 1 0 1 0 ...

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 12 / 15



Strong Transitions: Example

node myautomaton(i : int; c: bool) returns (o: int; stup:bool)

let

automaton

state Up

do o = 60 -> i+1; stup = true;

unless c then Down

state Down

do o = 150 -> -2 * i; stup = false;

unless c then Up

end

tel
ST ...

AS ...

i 4 4 4 4 4 4 4 4 ...

c 0 0 0 1 0 0 1 0 ...

o 60 5 5 150 −8 −8 60 5 ...

stup 1 1 1 0 0 0 1 1 ...

NS ...
P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 13 / 15



Understanding strong transitions

In each cycle,

Start State:

guard is evaluated BEFORE any equations.
Guard cannot refer to current value of equation output.

If the guard is true, ACTIVE STATE is the target state of unless.
otherwise it remains the start state.

equations of ACTIVE STATE are applied.

Now until transition of the active state (if any) is applied.

No successive unless is applied. At most one unless followed by one
until.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 14 / 15



Weak and Strong Transitions: Example

node myautomaton(i : int; c: bool) returns (o: int; stup:bool)

let

automaton

state Up

do o = 60 -> i+1; stup = true;

unless c then Down

state Down

do o = 150 -> -2 * i; stup = true;

until c then Up

end

tel
ST ...

AS ...

i 4 4 4 4 4 4 4 4 4 4 4 ...

c 0 0 0 1 0 0 0 1 1 0 0 ...

o 60 5 5 150 60 5 5 150 150 60 5 ...

stup 1 1 1 0 1 1 1 0 0 1 1 ...

NS ...
P.K. Pandya (IITB) Synchronous Dataflow Programming February 14, 2021 15 / 15


