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Problems with FSMs 

• All is not well with FSMs

• FSMs fine for small systems (10s of states)

• Imagine FSM with 100s and 1020 of states 
which is a reality

• Such large descriptions difficult to understand 

• FSMs are  flat and no structure

• Inflexible to add additional functionalities

• Need for structuring and combining different 
state machines
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Statecharts

• Extension of FSMs to have these features

• Due to David Harel

• Retains the nice features

– Pictorial appeal

– States and transitions

• Enriched with two features

–  Hierarchy and Concurrency

• States are of two kinds

– OR state (Hierarchy)

– AND state (concurrency)
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OR States
• An OR state can have a whole state machine inside it

• Example:
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OR states
• When the system is in the state Count, it is 

either in counting or not_counting

• Exactly in ONE of the inner states

• Hence the term OR states 

(more precisely XOR state)

• When Count is entered, it will enter 

not_counting 

  – default state

• Inner states can be  OR states (or  AND states)
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OR states

• Both outer and inner states active simultaneously

• When the outer state exits, inner states also exited

• Priorities of transitions

• Preemption (strong and weak)
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Economy of Edges

• Every transition from outer state 

corresponds to many transitions from each 

of the inner states

• Hierarchical construct replaces all these 

into one single transition

• Edge labels can be complex
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AND States
• An Or  state contains exactly one state machine

• An And state contains two or more state machines 

• Example: 
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Example

• Counting is an And state w/ 3 state machines

• S1, S2, S3, concurrent components of state

• When in state Counting, control resides 
simultaneously in all 3 state machines

• Initially, control is in C0, B0 and A0

• Execution involves, in general,  simultaneous 
transitions in all the state machines 
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Example (contd.)

• When in state C0, B0, A1, clock signal triggers 

the transition to B1 and A0 in S2 and S3 

• When in C0, B1, A1, clock signal input trigger the 

transitions to C1, B0 and A0 in all S1, S2, S3

• And state captures concurrency

• Default states in each concurrent component
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Economy of States

• AND-state can be flattened to single state mc

• Results in exponential number of states and 

transitions

• AND state is compact & intuitive representation
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Counting
• What are the three components of the state?

• They represent behaviour of three bits of a counter

• S3 –least significant bit, S2 the middle & S1 is MSB

• Compare this with flat and monolithic description of 
counter state machine given earlier

• Which is preferable?

• The present one is robust - can be redesigned to 
accommodate additional bits

• Look at the complete description of the counter 
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Complete Machine
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Communication

• Concurrent components of AND state communicate 
with each other

• Taking an edge requires certain events to occur

• New signals are generated when an edge is taken

• These can trigger further transitions in other 
components

• A series of transitions can be taken as a result of one 
transition triggered by environment event

• Different kinds of communication primitives

• More on this later
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Flat State Machines

• Capture the behaviour of the counter using FSMs

– Huge number of states and transitions

– Explosion of states and transitions

• Statechart description is compact 

– Easy to understand

– Robust

– Can be simulated

– Code generation is possible

– Execution mechanism is more complex
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Exercise
• Extend the lift controller example

– Control for closing and opening the door

– Control for indicator lamp

– Avoid movement of the lift when the door is open

– Include states to indicate whether lift in service or not

– Controller for multiple lifts

• Give a Statechart description
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Extensions to Statecharts 

• Various possibilities explored 

• Adding code to transitions, to states 

• Complex data types and function calls

• Combining textual programs with statecharts

• Various commercial tools exist

– Statemate and Rhapsody (ilogix)

– UML tools (Rational rose) 

– Stateflow (Mathworks) 

– SynchCharts (Esterel Technologies)
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Example
• Program State Machine model



© Kavi Arya 19

Fuel Controller 
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Fuel Controller (Contd.)
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Other Models 

•  Synchronous Reactive Models 

– Useful for expressing control dominated  application 

– Rich primitives for expressing complex controls 

– Esterel (Esterel Technologies) 

– More on this later 
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Design Features

• Two broad classifications

– Control-dominated designs

– Data-dominated Designs

• Control-dominated designs

– Input events arrive at irregular & unpredictable times

– Time of arrival and response more crucial than values
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Design Features

• Data-dominated designs

– Inputs are streams of data coming at regular intervals 

(sampled data)

– Values are more crucial

– Outputs are complex mathematical functions of inputs

– numerical computations and digital signal processing 

computations
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• State machines, Statecharts, Esterel are good for 
control-dominated designs

• Data flow models for data-dominated systems

• Special case of concurrent process models

• System behaviour described as an interconnection 
of nodes

• Each node describes transformation of data

• Connection between a pair of nodes describes the 
flow of data from one node to the other

Data flow Models 
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Example

+ -

*

modulate convolve

Transform

A B AC D B C D

t1 t2 t1 t2

B
B
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Data Flow Models

• Graphical Languages with support for 

– Simulation, debugging, analysis

– Code generation onto DSP and micro processors

• Analysis support for hw/sw partitioning

• Many commercial tools and languages

– Lustre, Signal 

–  SCADE

– Matlab, Scilab 
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Discrete Event Models

• Used for HW systems

• VHDL, Verilog

• Models are interconnection of nodes

• Each node reacts to events at their inputs

• Generates output events which trigger other 

nodes
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Discrete Event Models

• External events initiate a reaction

• Delays in nodes  modeled as delays in 

event generation

• Simulation

• Problems with cycles

• Delta cycles in VHDL
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A B

C

D

Discrete Event Models

D
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Realtime
Embedded Systems 
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Embedded Software

Typical structure of a simple embedded system

(Software)

loop

   read inputs/sensors;

   compute response;

   generate actuator outputs

forever
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Embedded Software (contd.)

• Design Decisions

–  How to read inputs?

–  How often to read inputs?

–  Which order to read the inputs?

–  How to compute responses? 

–  How to generate the responses?

–  How often to generate?
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The Simplest Approach

Round Robin Scheme

   loop
      await tick;
     read S1; take_action(S1);
     read S2; take_action(S2);
      read S3; take_action(S3);
forever

Tick is a time interrupt
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The Most General Scheme

• Task1 || Task2 || … || Task8

• Tasks

– Sequential threads

– Concurrently executed

– Can be scheduled and suspended

– Wait for specific time period or events

– Communicate with each other
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The Most General Scheme

• Real-time OS (RTOS kernel)

– Manages the tasks

– Task communications

– Timer services

– Schedules the tasks for execution using various

– Scheduling strategies
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Summary 
• Various models reviewed 

–  Sequential programming models 

–  Hierarchical and Concurrent State Machines

–  Data Flow Models, Discrete Event Models 

• Each model suitable for particular application 

• State Machines for event-oriented control systems 

• Sequential prog. model, data  flow model for fcn  computation 

• Real systems often require mixture of models

• Modeling tools/ lang. should have combination of all the features
– Ptolemy (Berkeley) project studies modeling, simulation, and design of concurrent, 

real-time, embedded systems (Java based). http://ptolemy.eecs.berkeley.edu/

– POLIS (Berkeley) framework for hw-sw Co-Design of Embedded Systems. 

– LUSTRE/SCADE of Esterel Technologies (from INRIA, France)
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