
© Kavi Arya 1

CS684
Embedded Systems

(Software)

Kavi Arya
CSE/ IIT Bombay

Models and Tools for Embedded Systems

© Kavi Arya 2

Problems with FSMs

• All is not well with FSMs

• FSMs fine for small systems (10s of states)

• Imagine FSM with 100s and 1020 of states
which is a reality

• Such large descriptions difficult to understand

• FSMs are flat and no structure

• Inflexible to add additional functionalities

• Need for structuring and combining different
state machines

© Kavi Arya 3

Statecharts

• Extension of FSMs to have these features

• Due to David Harel

• Retains the nice features

– Pictorial appeal

– States and transitions

• Enriched with two features

– Hierarchy and Concurrency

• States are of two kinds

– OR state (Hierarchy)

– AND state (concurrency)

© Kavi Arya 4

OR States
• An OR state can have a whole state machine inside it

• Example:

© Kavi Arya 5

OR states
• When the system is in the state Count, it is

either in counting or not_counting

• Exactly in ONE of the inner states

• Hence the term OR states

(more precisely XOR state)

• When Count is entered, it will enter

not_counting

 – default state

• Inner states can be OR states (or AND states)

© Kavi Arya 6

OR states

• Both outer and inner states active simultaneously

• When the outer state exits, inner states also exited

• Priorities of transitions

• Preemption (strong and weak)

© Kavi Arya 7

Economy of Edges

• Every transition from outer state

corresponds to many transitions from each

of the inner states

• Hierarchical construct replaces all these

into one single transition

• Edge labels can be complex

© Kavi Arya 8

AND States
• An Or state contains exactly one state machine

• An And state contains two or more state machines

• Example:

© Kavi Arya 9

Example

• Counting is an And state w/ 3 state machines

• S1, S2, S3, concurrent components of state

• When in state Counting, control resides
simultaneously in all 3 state machines

• Initially, control is in C0, B0 and A0

• Execution involves, in general, simultaneous
transitions in all the state machines

© Kavi Arya 10

Example (contd.)

• When in state C0, B0, A1, clock signal triggers

the transition to B1 and A0 in S2 and S3

• When in C0, B1, A1, clock signal input trigger the

transitions to C1, B0 and A0 in all S1, S2, S3

• And state captures concurrency

• Default states in each concurrent component

© Kavi Arya 11

Economy of States

• AND-state can be flattened to single state mc

• Results in exponential number of states and

transitions

• AND state is compact & intuitive representation

© Kavi Arya 12

Counting
• What are the three components of the state?

• They represent behaviour of three bits of a counter

• S3 –least significant bit, S2 the middle & S1 is MSB

• Compare this with flat and monolithic description of
counter state machine given earlier

• Which is preferable?

• The present one is robust - can be redesigned to
accommodate additional bits

• Look at the complete description of the counter

© Kavi Arya 13

Complete Machine

© Kavi Arya 14

Communication

• Concurrent components of AND state communicate
with each other

• Taking an edge requires certain events to occur

• New signals are generated when an edge is taken

• These can trigger further transitions in other
components

• A series of transitions can be taken as a result of one
transition triggered by environment event

• Different kinds of communication primitives

• More on this later

© Kavi Arya 15

Flat State Machines

• Capture the behaviour of the counter using FSMs

– Huge number of states and transitions

– Explosion of states and transitions

• Statechart description is compact

– Easy to understand

– Robust

– Can be simulated

– Code generation is possible

– Execution mechanism is more complex

© Kavi Arya 16

Exercise
• Extend the lift controller example

– Control for closing and opening the door

– Control for indicator lamp

– Avoid movement of the lift when the door is open

– Include states to indicate whether lift in service or not

– Controller for multiple lifts

• Give a Statechart description

© Kavi Arya 17

Extensions to Statecharts

• Various possibilities explored

• Adding code to transitions, to states

• Complex data types and function calls

• Combining textual programs with statecharts

• Various commercial tools exist

– Statemate and Rhapsody (ilogix)

– UML tools (Rational rose)

– Stateflow (Mathworks)

– SynchCharts (Esterel Technologies)

© Kavi Arya 18

Example
• Program State Machine model

© Kavi Arya 19

Fuel Controller

© Kavi Arya 20

Fuel Controller (Contd.)

© Kavi Arya 22

Other Models

• Synchronous Reactive Models

– Useful for expressing control dominated application

– Rich primitives for expressing complex controls

– Esterel (Esterel Technologies)

– More on this later

© Kavi Arya 23

Design Features

• Two broad classifications

– Control-dominated designs

– Data-dominated Designs

• Control-dominated designs

– Input events arrive at irregular & unpredictable times

– Time of arrival and response more crucial than values

© Kavi Arya 24

Design Features

• Data-dominated designs

– Inputs are streams of data coming at regular intervals

(sampled data)

– Values are more crucial

– Outputs are complex mathematical functions of inputs

– numerical computations and digital signal processing

computations

© Kavi Arya 25

• State machines, Statecharts, Esterel are good for
control-dominated designs

• Data flow models for data-dominated systems

• Special case of concurrent process models

• System behaviour described as an interconnection
of nodes

• Each node describes transformation of data

• Connection between a pair of nodes describes the
flow of data from one node to the other

Data flow Models

© Kavi Arya 26

Example

+ -

*

modulate convolve

Transform

A B AC D B C D

t1 t2 t1 t2

B
B

© Kavi Arya 27

Data Flow Models

• Graphical Languages with support for

– Simulation, debugging, analysis

– Code generation onto DSP and micro processors

• Analysis support for hw/sw partitioning

• Many commercial tools and languages

– Lustre, Signal

– SCADE

– Matlab, Scilab

© Kavi Arya 28

Discrete Event Models

• Used for HW systems

• VHDL, Verilog

• Models are interconnection of nodes

• Each node reacts to events at their inputs

• Generates output events which trigger other

nodes

© Kavi Arya 29

Discrete Event Models

• External events initiate a reaction

• Delays in nodes modeled as delays in

event generation

• Simulation

• Problems with cycles

• Delta cycles in VHDL

© Kavi Arya 30

A B

C

D

Discrete Event Models

D

© Kavi Arya 32

Realtime
Embedded Systems

© Kavi Arya 33

Embedded Software

Typical structure of a simple embedded system

(Software)

loop

 read inputs/sensors;

 compute response;

 generate actuator outputs

forever

© Kavi Arya 34

Embedded Software (contd.)

• Design Decisions

– How to read inputs?

– How often to read inputs?

– Which order to read the inputs?

– How to compute responses?

– How to generate the responses?

– How often to generate?

© Kavi Arya 35

The Simplest Approach

Round Robin Scheme

 loop
 await tick;
 read S1; take_action(S1);
 read S2; take_action(S2);
 read S3; take_action(S3);
forever

Tick is a time interrupt

© Kavi Arya 38

The Most General Scheme

• Task1 || Task2 || … || Task8

• Tasks

– Sequential threads

– Concurrently executed

– Can be scheduled and suspended

– Wait for specific time period or events

– Communicate with each other

© Kavi Arya 39

The Most General Scheme

• Real-time OS (RTOS kernel)

– Manages the tasks

– Task communications

– Timer services

– Schedules the tasks for execution using various

– Scheduling strategies

© Kavi Arya 40

Summary
• Various models reviewed

– Sequential programming models

– Hierarchical and Concurrent State Machines

– Data Flow Models, Discrete Event Models

• Each model suitable for particular application

• State Machines for event-oriented control systems

• Sequential prog. model, data flow model for fcn computation

• Real systems often require mixture of models

• Modeling tools/ lang. should have combination of all the features
– Ptolemy (Berkeley) project studies modeling, simulation, and design of concurrent,

real-time, embedded systems (Java based). http://ptolemy.eecs.berkeley.edu/

– POLIS (Berkeley) framework for hw-sw Co-Design of Embedded Systems.

– LUSTRE/SCADE of Esterel Technologies (from INRIA, France)

© Kavi Arya 41

References
• F. Balarin et al., Hardware – Software Co-design of Embedded Systems: The POLIS approach,

Kluwer, 1997

• N. Halbwachs, Synch. Prog. Of Reactive Systems, Kluwer, 1993

• D. Harel et al., STATEMATE: a working environment for the development of complex reactive

systems, IEEE Trans. Software Engineering, Vol. 16 (4), 1990.

• J. Buck, et al., Ptolemy: A framework for simulating and prototyping heterogeneous systems, Int.

Journal of Software Simulation, Jan. 1990

• Edward A. Lee, Overview of the Ptolemy Project, Technical Memorandum No. UCB/ERL M03/25,

University of California, Berkeley, CA, 94720, USA, July 2, 2003

• Gerard Berry, The Esterel v5 Language PrimerVersion v591, Centre de Mathematiques Appliques

Ecole des Mines and INRIA 2004, June 5, 2000. Available from
https://www.researchgate.net/publication/242374294_The_Esterel_v5_Language_Primer_Version_v5_91

• Edward A. Lee and Yang Zhao, "Reinventing Computing for Real Time in Proceedings of the

Monterey Workshop 2006, LNCS 4322, pp. 1-25, 2007, F. Kordon and J. Sztipanovits (Eds.) ©

Springer-Verlag Berlin Heidelberg 2007

• N. Halbwachs et al. The Synchronous Data Flow Programming Language LUSTRE. In Proc. IEEE

1991 Vol. 79, No. 9. Accessed 17 March 2014.

• J. Colaço, B. Pagano and M. Pouzet, "SCADE 6: A formal language for embedded critical software

development (invited paper)," 2017 International Symposium on Theoretical Aspects of Software
Engineering (TASE), Sophia Antipolis, 2017, pp. 1-11, doi: 10.1109/TASE.2017.8285623

https://www.researchgate.net/publication/242374294_The_Esterel_v5_Language_Primer_Version_v5_91

	Slide 1: CS684 Embedded Systems (Software)
	Slide 2: Problems with FSMs
	Slide 3: Statecharts
	Slide 4: OR States
	Slide 5: OR states
	Slide 6: OR states
	Slide 7: Economy of Edges
	Slide 8: AND States
	Slide 9: Example
	Slide 10: Example (contd.)
	Slide 11: Economy of States
	Slide 12: Counting
	Slide 13: Complete Machine
	Slide 14: Communication
	Slide 15: Flat State Machines
	Slide 16: Exercise
	Slide 17: Extensions to Statecharts
	Slide 18: Example
	Slide 19: Fuel Controller
	Slide 20: Fuel Controller (Contd.)
	Slide 22: Other Models
	Slide 23: Design Features
	Slide 24: Design Features
	Slide 25: Data flow Models
	Slide 26: Example
	Slide 27: Data Flow Models
	Slide 28: Discrete Event Models
	Slide 29: Discrete Event Models
	Slide 30: Discrete Event Models
	Slide 32: Realtime Embedded Systems
	Slide 33: Embedded Software
	Slide 34: Embedded Software (contd.)
	Slide 35: The Simplest Approach
	Slide 38: The Most General Scheme
	Slide 39: The Most General Scheme
	Slide 40: Summary
	Slide 41: References

