
© Kavi Arya 1

CS684
Embedded Systems (Software)

Models & Tools for Embedded

Systems (I)

Kavi Arya

CSE/ IIT Bombay

© Kavi Arya 2

Models and Tools for
Embedded Systems

© Kavi Arya 3

Organization
1. Model-based Development of Embedded Sys.

2. Review of models of concurrency in

programming languages

3. Introduction to Lustre/Heptagon

4. Simple case studies

© Kavi Arya 4

Reactive Systems

• Standard Software is a transformational system

• Embedded software is reactive

T. S.
I O

© Kavi Arya 5

Reactive Systems

R. S.

Time

© Kavi Arya 6

Reactive Systems (features)

• Non-termination
– Ongoing continuous relationship with environment

• Concurrency

– At least system & environment

• Event driven
– Events at unpredictable times

• Environment is the master

– Timely response (hard and soft real time)

• Safety – Critical
– Conventional models inadequate

© Kavi Arya 7

Cyber Physical Systems

• Consists of physical elements controlled by

– Supervisor, Discrete Controller & I/O interfaces

• Supervisor uses I/O Interface Drivers to interact w/devices,

• Control uses repeated execution of Sense+Compute Step

• Discrete Controller transforms input flow into output flow

(synchronously)

• Discrete controller given as “reactive kernel” (“difficult” bit)

• Let’s explore how to describe this reactive kernel

© Kavi Arya 8

Development Challenges (Complexity)

• Correct functioning is crucial

• Reactive

• Concurrent

• Realtime

• Stringent resource constraints

© Kavi Arya 9

Development Challenges

Embedded Systems are complex

1. Correct functioning is crucial
• Safety-critical applications

• Damage to life, economy can result

2. They are Reactive Systems

• Once started run forever.

• Termination is a bad behavior.

• Compare conventional computing

 (transformational systems)

© Kavi Arya 10

3. Concurrent systems

• System and environment run concurrently

• Multi-functional

4. Real-time systems

• Not only realtime outputs - but in realtime

• Imagine delay of minutes in pacemaker system

Development Challenges

© Kavi Arya 11

5. Stringent resource constraints
• Compact systems

− Simple processors

− Limited memory

• Quick response

• Good throughput

• Low power

• Time-to-market

Development Challenges

© Kavi Arya 12

System Development

• Process of arriving at final product from reqs

• Requirements

– Vague ideas, algorithms, of-the shelf components,

additional functionality etc.

– Natural Language statements

– Informal

• Final Products

– System Components

– Precise and Formal

© Kavi Arya 13

System Components

• Embedded System Components

– Programmable processors (controllers & DSP)

– Standard and custom hardware

– Concurrent Software

– OS Components:

• Schedulers, Timers, Watchdogs,

• IPC primitives

– Interface components

• External, HW and SW interface

© Kavi Arya 14

System Development

• Decomposition of functionality

• Architecture Selection:

Choice of processors, standard hardware

• Mapping of functionality to HW and SW

• Development of Custom HW and software

• Communication protocol between HW and SW

• Prototyping, verification and validation

© Kavi Arya 15

Functional Design & Mapping

HW1 HW2 HW3 HW4

Hardware Interface

RTOS/Drivers

T
h
re

a

d

Architectural

Design

F1
F2

F3

F4

F5
Functional

Design

(F3) (F4)

(F5)

(F2)

Source:

Ian Phillips, ARM

VSIA 2001

© Kavi Arya 16

Design Choices

• Choices in Components
– Processors, DSP chips, standard components

• Many different choices in mapping

– Fully HW solution

• More speed, higher cost, longer TTM
(“Time To Market”), less robust

• Standard HW development

– Fully SW solution

• Slow, less TTM, less cost, more flexible

• Standard microcontroller development

© Kavi Arya 17

Mixed Solution

• Desired Solution is often mixed
– Optimal performance, cost and TTM

– Design is more involved and takes more time

– Involves Co-design of HW and SW

– System Partitioning - difficult step

– For optimal designs, design exploration & evaluation
essential

– Design practices supporting exploration and evaluation
essential

– Should support correctness analysis as it is crucial to
ensure high quality

© Kavi Arya 18

Classical design methodology

Analysis

Design

Implementation

Testing

Requirements

© Kavi Arya 19

Development Methodology

• Simplified Picture of SW development

– Requirements Analysis

– Design

– Implementation (coding)

– Verification and Validation

– Bugs lead redesign or re-implementation

© Kavi Arya 20

Development Methodology

• All steps (except implementation) are informal
– Processes/ objects not well defined and ambiguous

– Design and requirement artifacts not precisely defined

– Inconsistencies and incompleteness

– No clear relationship between different stages

– Subjective, no universal validity

– Independent analysis difficult

– Reuse not possible

© Kavi Arya 21

Classical Methodology

• Totally inadequate for complex systems
– Thorough reviews required for early bug removal

– Bugs often revealed late while testing

– Traceability to Design steps not possible

– Debugging difficult

– Heavy redesign cost

• Not recommended for high integrity systems

– i.e. embedded systems

© Kavi Arya 22

Formal Methodology

• A methodology using precisely defined

artifacts at all stages

– Precise statement of requirements

– Formal design artifacts (Models)

– Formal: Precisely defined syntax and semantics

– Translation of Design models to implementation

© Kavi Arya 23

Model-based Development

• Models are abstract and high level

descriptions of design objects

• Focus on one aspect at a time

• Less development and redesign time

• Implementation constraints can be placed

on models

• Design exploration, evaluation and quick

prototyping possible using models

© Kavi Arya 24

New Paradigm

• Executable models essential
– Simulation

• Can be rigorously validated

– Formal Verification

• Models can be debugged and revised

• Automatic generation of final code

– Traceability
• The paradigm

 Model – Verify – Debug – CodeGenerate

© Kavi Arya 25

Model-based Methodology

Analysis

Design

Implementation

Testing

Requirements

Verification

© Kavi Arya 26

Tools

• Various tools supporting such methodologies

– commercial and academic

• POLIS (Berkeley), Cierto VCC (Cadence)

• SpecCharts (Irvine)

• STATEMATE, Rhapsody (ilogix)

• Rose RT (Rational)

• Lustre, Heptagon, SCADE, Esterel Studio

(Esterel Technologies)

• Stateflow and Simulink (Mathworks)

© Kavi Arya 27

Modeling Languages

• Models need to be formal

• Languages for describing models - various exist

• High level programming languages (C, C++)

• Finite State Machines, Statecharts, SpecCharts,

Esterel, Stateflow

• Data Flow Diagrams, Lustre, Signal, Simulink

• Hardware generation languages (Handel-C)

• Hardware description languages (VHDL, Verilog)

• Unified Modeling Language(UML)

© Kavi Arya 28

• Choice of languages depends on nature of

computations modeled

• Seq. programming models for standard data

processing computations

• Data flow diagrams for iterative data transformation

• State Machines for controllers

• HDLs for hardware components

Modeling Languages

© Kavi Arya 29

• Embedded Systems are complex

– Correct functioning is crucial

– They are reactive systems (RS)

– They are Concurrent

– They are Realtime

– With stringent resource constraints

• System development methodology needed

– To model reactive systems

– Derive implementation from model

– Verification capability is important

• New System building paradigm:

– Model – Verify – Debug – CodeGenerate

Summary

© Kavi Arya 30

Models and Tools for
Embedded Systems

© Kavi Arya 31

Finite State Machines

• One of the well-known models

• Intuitive and easy to understand

• Pictorial appeal

• Can be made rigorous

• Standard models for Protocols, Controllers, HW

© Kavi Arya 32

A Simple Example

• 3 bit counter

• C – count signal for
increments

• Resets to 0 when counter
reaches maximum value

• Counter can be described by
a program with a counter
variable (Software Model)

• Or in detail using flip flops,
gates and wires (Hardware
model)

© Kavi Arya 33

State Machine Model

• Counter behaviour naturally described by state

machine

• States determine the current value of the counter

• Transitions model state changes to the event C.

• Initial state determines initial value of counter

• No final state (why?)

© Kavi Arya 34

Precise Definition

< Q, q0, S, T>

• Q – A finite no. of state names

• q0 – Initial state

• S – Edge alphabet

• T – edge function or relation

• Abstract labels to concrete event,

condition and action

© Kavi Arya 35

Semantics

• Given syntax, a precise semantics can be defined

• Set of all possible sequences of states & edges

• Each sequence starts with the initial state

• Every state-edge-state triples are adjacent states

connected by an edge

• Given FSM, unique set of sequences can be

associated

• Language accepted by a FSM

© Kavi Arya 36

Abstract Models

• Finite State machine model is abstract

• Abstracts out various details

– How to read inputs?

– How often to look for inputs?

– How to represent states and transitions?

– Focus on specific aspects

• Easy for analysis, debugging

• Redesign cost is reduced

• Different possible implementations
– Hardware or Software

– Useful for codesign of systems

© Kavi Arya 37

Intuitive Models

• FSM models are intuitive

• Visual

– A picture is worth a thousand words

• Fewer primitives – easy to learn, less scope

for mistakes and confusion

• Neutral and hence universal applicability

– For software, hardware and control engineers

© Kavi Arya 38

Rigorous Models

• FSM models are precise and unambiguous

• Have rigorous semantics

• Can be executed (or simulated)

• Execution mechanism is simple: An iterative scheme

state = initial_state
 loop
 case state:
 state 1: Action 1
 state 2: Action 2
 . . .
 end case
 end

© Kavi Arya 39

Code Generation

• FSM models can be refined to different impl.

– Both HW and SW implementation

– Exploring alternate implementations

– For performance and other considerations

• Automatic code generation

– Preferable over hand generated code

– Quality is high and uniform

© Kavi Arya 41

Another Example

A Traffic Light Controller

• Traffic light at intersection of Highway & Farm road

• Farm road sensors (signal C)

• G, R – setting signals green and red

• S,L - short and long timer signal

• TGR - reset timer, set hway green & farm road red

© Kavi Arya 42

State Machine

© Kavi Arya 43

Another Example

A Simple Lift Controller

3-floor lift

• Lift can be in any floor

– Si - on floor i

• Request can come from any floor

– ri - request from floor i

• Lift can be asked to move up or down

– uj,dj - up/down to jth floor

© Kavi Arya 44

FSM model

© Kavi Arya 47

Nondeterminism

• Suppose lift is in floor 2 (State S 2)

• What is the next state when requests r1 and r3 arrive?
– Go to S1

– Or go to S3

• The model non-committal – allows both

• More than one next state for a state and an input

• This is called nondeterminism

• Nondeterminism arises out of abstraction

• Algorithm to decide the floor is not modeled

• Models can be nondeterministic but not real lifts!

© Kavi Arya 48

Nondeterminism

• Models focus attention on a particular aspect

• The lift model focused on safety aspects

• And so ignored the decision algorithm

– Modeling languages should be expressive

– Std. Programming languages are not

• Use another model for capturing decision algorithm

• Multiple models, separation of concerns

– Independent analysis and debugging

– Management of complexity

• Of course, there should be a way of combining
different models

© Kavi Arya 49

C-model
enum floors {f1, f2, f3};
enum State {first, second, third};
enum bool {ff, tt};
enum floors req, dest;
enum bool up, down = ff;
enum State cur_floor = first;

req = read_req();

 while (1)
{ switch (cur_floor)
 { case first: if (req == f2)
 {up = tt; dest = f2;}
 else if (req == f3)
 {up = tt; dest = f3;}
 else { up == ff; down = ff;};
 break;

© Kavi Arya 50

C- model

case second: if (req == f3)

 {up = tt; dest = f3;}

 else if (req == f1)

 { up = ff; down = tt; dest = f1;}

 else { up == ff; down = ff;};

 break;

case third: if (req == f2)

 {up = ff; down = tt; dest = f2;}

 else if (req == f1)

 { up = ff; down = tt; dest = f1;}

 else { up == ff; down = ff;};

 break; }; /* end of switch */

 req = read_req(); } /* end of while */

© Kavi Arya 51

Suitability of C

• C not natural for such applications

• Various problems
– Events and states all modeled as variables

– Not natural for event oriented embedded applications

– States are implicit (control points decide states)

– No abstract description possible

– Commitment to details at an early stage

– Too much work when design likely to be discarded

© Kavi Arya 52

Exercise

• Is the C model non-deterministic?

• What happens when two requests to go in
different directions arrive at a state?

© Kavi Arya 53

Yet Another example

• A Simple Thermostat controller

T < tmax

T < tmin

onoff

T’ = K1 T’ = K2

© Kavi Arya 54

Summary (FSM)

• Finite number of states

• Initial state

• No final state (reactive system)

• Non-determinism (result of abstraction)

• Edges labeled with events

• Behavior defined by sequences of transitions

• Rigorous semantics

• Easy to simulate and debug

• Automatic Code generation

© Kavi Arya 55

Problems with FSMs

• All is not well with FSMs

• FSMs fine for small systems (10s of states)

• Imagine FSM with 100s and 1000s of states which is
a reality

• Such large descriptions difficult to understand

• FSMs are flat and no structure

• Inflexible to add additional functionalities

• Need for structuring & combining dif. state machines

© Kavi Arya 56

References (Old work)

• F. Balarin et al., Hardware – Software Co-design of

Embedded Systems: The POLIS approach, Kluwer, 1997

• N. Halbwachs, Synch. Prog. Of Reactive Systems, Kluwer,

1993

• D. Harel et al., STATEMATE: a working environment for the

development of complex reactive systems, IEEE Trans.

Software Engineering, Vol. 16 (4), 1990.

• J. Buck, et al., Ptolemy: A framework for simulating and

prototyping heterogeneous systems, Int. Journal of

Software Simulation, Jan. 1990

• Edward Lee and Sanjit Seshia, Introduction to Embedded

Systems, MIT Press 2017.

	Slide 1: CS684 Embedded Systems (Software)
	Slide 2: Models and Tools for Embedded Systems
	Slide 3: Organization
	Slide 4: Reactive Systems
	Slide 5: Reactive Systems
	Slide 6: Reactive Systems (features)
	Slide 7: Cyber Physical Systems
	Slide 8: Development Challenges (Complexity)
	Slide 9: Development Challenges
	Slide 10: Development Challenges
	Slide 11
	Slide 12: System Development
	Slide 13: System Components
	Slide 14: System Development
	Slide 15: Functional Design & Mapping
	Slide 16: Design Choices
	Slide 17: Mixed Solution
	Slide 18: Classical design methodology
	Slide 19: Development Methodology
	Slide 20: Development Methodology
	Slide 21: Classical Methodology
	Slide 22: Formal Methodology
	Slide 23: Model-based Development
	Slide 24: New Paradigm
	Slide 25: Model-based Methodology
	Slide 26: Tools
	Slide 27: Modeling Languages
	Slide 28: Modeling Languages
	Slide 29: Summary
	Slide 30: Models and Tools for Embedded Systems
	Slide 31: Finite State Machines
	Slide 32: A Simple Example
	Slide 33: State Machine Model
	Slide 34: Precise Definition
	Slide 35: Semantics
	Slide 36: Abstract Models
	Slide 37: Intuitive Models
	Slide 38: Rigorous Models
	Slide 39: Code Generation
	Slide 41: Another Example
	Slide 42: State Machine
	Slide 43: Another Example
	Slide 44: FSM model
	Slide 47: Nondeterminism
	Slide 48: Nondeterminism
	Slide 49: C-model
	Slide 50: C- model
	Slide 51: Suitability of C
	Slide 52: Exercise
	Slide 53: Yet Another example
	Slide 54: Summary (FSM)
	Slide 55: Problems with FSMs
	Slide 56: References (Old work)

