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Examples of Embedded Systems

We look at details of
• Simple Digital Camera
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Embedded Applications

They are everywhere!

• Wristwatches, washing machines,

• Microwave ovens, 

• Elevators, mobiles, printers

• Telephone exchanges, 

• Automobiles, aircrafts, …
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Common Design Metrics

• NRE (Non-recurring engineering) cost

• Unit cost

• Size (bytes, gates)

• Performance (execution time)

• Power (more power=> more heat & less battery time)

• Flexibility (ability to change functionality)

• Time to prototype

• Time to market

• Maintainability

• Correctness

• Safety (probability that system won’t cause harm)
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Embedded Apps

•  A modern home

–  Has a few general purpose PCs/laptops 

–  But dozens of embedded systems. 

•  More prevalent in industrial sectors 

–  10’s of embedded computers in modern 

automobiles 

–  Chemical and nuclear power plants 
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Embedded Applications 

An embedded system typically has a digital signal   

processor and a variety of I/O devices connected to  

sensors and actuators.

Computer (controller) 

surrounded by other subsystems, sensors and actuators

Computer -- Controller's function is :

•   Monitor parameters of physical processes of “environment”

•   Control these processes whenever needed. 
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Simple Examples

A simple thermostat controller

•  Periodically reads temperature of chamber 

•  Switches on or off the cooling system. 

A pacemaker

• Constantly monitors the heart

• Paces heart when heart beats are missed 
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1. Digital Camera: An Embedded System

• Introduction to simple digital camera

• Requirements specification

• Designer’s perspective

• Design exploration 

20

Embedded System Design: Frank Vahid/ Tony Givargis 
(John Wiley & Sons, Inc.2014)

http://www.kodak.com/US/en/digital/dlc/book2/chapter6/indexflash.shtml
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Requirements Specification

• System’s reqmts – what system should do

– Nonfunctional requirements

• Constraints on design metrics 
(e.g., “should use 0.001 watt or less”)

– Functional requirements

• System’s behavior 
(e.g., “output X to be input Y times 2”)

– ….
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Requirements Specification…

Initial specification may be general and come 

from marketing dept.

• E.g., short document detailing market need for a low-

end digital camera that:
– Captures/ stores at least 50 low-res images and uploads to PC,

– Costs around $100 with single medium-size IC costing < $25,

– As long as possible battery life,

– Expected sales volume of 200,000 if market entry < 6 months,

– 100,000 if between 6 and 12 months,

– Insignificant sales beyond 12 months
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Nonfunctional requirements

• Design metrics of importance based on 

initial specification

– Performance: time required to process image

– Size: number of elementary logic gates (2-input 

NAND gate) in IC

– Power: measure of avg. electrical energy 

consumed while processing

– Energy: battery lifetime (power x time)
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Nonfunctional requirements…

• Constrained metrics

– Values must be below (sometimes above) 

certain threshold

• Optimization metrics

– Improve as much as possible to improve product

• Metric can be both constrained and 

optimization
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Nonfunctional requirements…

• Power

– Must operate below certain temperature 
(cooling fan not possible)

– Therefore, constrained metric

• Energy
– Reducing power or time reduces energy

– Optimized metric: battery to last as long as 
possible



©  Kavi Arya                                           IIT Bombay                                                       14

Nonfunctional requirements…

• Performance

– Must process image fast enough to be useful

– 1 sec reasonable constraint

• Slower would be annoying

• Faster not necessary for low-end of market

– Therefore, constrained metric

• Size

– Must use IC that fits in reasonably sized camera

– Constrained and optimization metric

• Constraint may be 1M gates, but smaller would be cheaper
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Example: Panasonic Lumix DMC TZ5

• 9.1 effective Megapixels

• 28-280mm equiv lens, 10x optical zoom & 4x Digital Zoom

• 3.0-inch LCD with 460,000 dots resolution

• Optical Image Stabilizer

• ISO sensitivity up to 6400

• Face Detection AF

• 6 shooting modes, 23 scene modes inc. Intelligent Auto mode

• Venus Engine IV processor

• HD output

• In-Camera Editing 

$300
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1. Digital Camera: An Embedded System

Design 

– Four implementations

– Issues: 

• General-purpose vs. single-
purpose processors?

• Partitioning of functionality 
among different processor 
types?

20

http://www.kodak.com/US/en/digital/dlc/book2/chapter6/indexflash.shtml
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Functional Design & Mapping
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Hardware Interface

RTOS/Drivers
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d

Architectural

Design

F1
F2

F3

F4

F5
Functional

Design
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(F5)

(F2)

Source:

Ian Phillips, ARM

VSIA 2001
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Introduction to a simple digital camera

• Captures images

• Stores images in digital format
– Multiple images stored in camera

• Number depends on memory and bits/image

• Downloads images to PC
– Serial comm (USB, etc.)

– Wireless (Bluetooth, 802.11, …)



©  Kavi Arya                                           IIT Bombay                                                       19

Introduction to a simple digital camera…

• Only possible in couple of decades

–  Systems-on-a-chip

• Multiple processors and memories on one IC

– High-capacity flash memory

• Very simple description used for example

– Many more features with real digital camera

• Variable size images, image deletion, digital stretching, 

zooming in and out, etc.
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Designer’s perspective

• Two key tasks

1. Processing images and storing in memory

• When shutter pressed:

– Image captured

– Converted to digital form by charge-coupled device 

(CCD)

– Compressed and archived in internal memory

2. Uploading images to PC

• Digital camera attached to PC

• Software to transmit archived images serially
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Charge-coupled device (CCD)
• Special sensor that captures an image

• Light-sensitive silicon solid-state device composed of 
many cells

Light 

charge 

8-bit value:

0 => no exposure 

255=> intense light

Some columns 

covered with  

black strip. 

Light-intensity 

here used for zero-

bias adjustment

Electromechanical shutter 

activates to expose cells to 

light

Circuitry discharges cells, 

activates  shutter, reads 8-

bit  value of each cell. 

Values clocked out of  CCD 

by external logic through  

std  parallel bus interface.

Lens area

Pixel columns

Covered columns

Electronic 

circuitry

Electro-

mechanical 

shutter

P
ix

e
l 
ro

w
s
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Zero-bias error

• Manufacturing errors cause cells to measure 

slightly above or below actual light intensity

• Error typically same across columns, but different 

across rows

• Some of left most columns blocked by black paint 

to detect zero-bias error

– Reading of non-zero in blocked cells is zero-bias error

– Each row corrected by subtracting avg error in blocked cells 

for that row
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Zero-bias error…

123 157 142 127 131 102 99 235

134 135 157 112 109 106 108 136

135 144 159 108 112 118 109 126

176 183 161 111 186 130 132 133

137 149 154 126 185 146 131 132

121 130 127 146 205 150 130 126

117 151 160 181 250 161 134 125

168 170 171 178 183 179 112 124

136 170 155 140 144 115 112 248 12 14

145 146 168 123 120 117 119 147 12 10

144 153 168 117 121 127 118 135 9 9

176 183 161 111 186 130 132 133 0 0

144 156 161 133 192 153 138 139 7 7

122 131 128 147 206 151 131 127 2 0

121 155 164 185 254 165 138 129 4 4

173 175 176 183 188 184 117 129 5 5

Covered cells

Before zero-bias adjustment After zero-bias adjustment

-13

-11

-9

0

-7

-1

-4

-5

Zero-bias 

adjustment
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Compression

• Store more images

• Transmit image to PC in less time

• JPEG (Joint Photographic Experts Group)
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Compression…

JPEG (Joint Photographic Experts Group)

– Popular standard format for representing digital images in a 

compressed form

– Provides for a number of different modes of operation 

– Sequential Mode used here provides high compression 

ratios using DCT (Discrete Cosine Transform)

(others are -- progressive, lossless,  hierarchical)

– Image data divided into blocks of 8 x 8 pixels

– 3 steps performed on each block

  DCT, Quantization, Huffman encoding
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DCT step

• Transforms original 8 x 8 block into a 
cosine-frequency domain

– Upper-left corner values represent more of 
essence of image

   (Average for the image)

– Lower-right corner values represent finer details

• Can reduce precision of these values and 
retain reasonable image quality

• Quantize – many may become 0
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DCT step…

• FDCT (Forward DCT) formula
– C(h) = if (h == 0) then 1/sqrt(2) else 1.0

• Auxiliary function used in main function F(u,v)

– F(u,v) = ¼ x C(u) x C(v) Σx=0..7 Σy=0..7 Dxy x cos(π(2u + 
1)u/16) x cos(π(2y + 1)v/16)

• Gives encoded pixel at row u, column v

• Dxy is original pixel value at row x, column y

• IDCT (Inverse DCT)

– Reverses process to obtain original block (not 
needed for this design)
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Quantization step

• Achieve high compression ratio by 

reducing image quality

– Reduce bit precision of encoded data

• Fewer bits needed for encoding

• One way is divide all values by factor of 2

–Simple right shifts can do this

–General: table driven mapping

– Dequantization reverses process for 

decompression
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Quantization step…

1150 39 -43 -10 26 -83 11 41

-81 -3 115 -73 -6 -2 22 -5

14 -11 1 -42 26 -3 17 -38

2 -61 -13 -12 36 -23 -18 5

44 13 37 -4 10 -21 7 -8

36 -11 -9 -4 20 -28 -21 14

-19 -7 21 -6 3 3 12 -21

-5 -13 -11 -17 -4 -1 7 -4

144 5 -5 -1 3 -10 1 5

-10 0 14 -9 -1 0 3 -1

2 -1 0 -5 3 0 2 -5

0 -8 -2 -2 5 -3 -2 1

6 2 5 -1 1 -3 1 -1

5 -1 -1 -1 3 -4 -3 2

-2 -1 3 -1 0 0 2 -3

-1 -2 -1 -2 -1 0 1 -1
After being decoded using DCT After quantization

Divide 

each cell’s 

value  by 

8
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• Serialize 8 x 8 block of pixels

– Values are converted into single list using

 zigzag pattern

Huffman encoding step

Usually, first item of blocks are stored differentially

Zigzag brings equal values together => run-length encoding
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• Perform Huffman encoding

– More frequently occurring pixels assigned 

short binary code

– Longer binary codes left for less frequently 

occurring pixels

• Each pixel in serial list converted to 

Huffman encoded values

– Much shorter list, thus compression

Huffman encoding step…
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Huffman encoding example…

• Pixel frequencies on left table:
– Pixel value –1 occurs 15 times

– Pixel value 14 occurs 1 time

• Build Huffman tree from bot  up
– Create one leaf node for each 

pixel value and assign frequency 
as node’s value

– Create internal node by joining any 
two nodes whose sum is a minimal 
value. This sum is internal node’s 
value

– Repeat until complete binary tree

• Traverse tree from root to leaf to 
obtain binary code for leaf’s 
pixel value

– Append 0 for left traversal, 1 for 
right traversal

• Huffman encoding is reversible
– No code is prefix of another code

144

5 3 2

1 0 -2

-1

-10 -5 -3

-4 -8 -9614

1 1

2

1 1

2

1

2
2

4

3

5

4

6
5

9

5

1

0

5

11

5

14

6

17

8

18
15

29

35

64

1

-1 00

0 100

-2 110

1 010

2 1110

3 1010

5 0110

-3 11110

-5 10110

-10 01110

144 111111

-9 111110

-8 101111

-4 101110

6 011111

14 011110

Pixel 

frequencies
Huffman tree

Huffman 

codes
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Archive step

• Record starting address and image size

– Can use linked list

• One possible way to archive images

– If max number of images archived is N:

• Set aside memory for N addresses and N image-size variables

• Keep counter for location of next available address

• Initialize addresses and image-size variables to 0

• Set global memory address to N x 4

– Assuming addresses, image-size variables occupy N x 4 bytes

• First image archived starting at address N x 4

• Global memory address updated to N x 4 + (compressed image size)

• Memory requirement based on:

– N, image size, and average compression ratio
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Uploading to PC

• When connected to PC and upload 

command received

– Read images from memory

– Transmit serially using UART*

– While transmitting

• Reset pointers, image-size variables 

and global memory pointer accordingly

*UART (Universal Asynchronous Receiver Transmitter) 
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Informal functional specification

• Flowchart breaks 

functionality down into 

simpler functions

• Each function’s details 

described in English

• Low quality image has 

resolution of 64 x 64

• Mapping functions to a 

particular processor type 

not done at this stage

serial output

e.g., 011010...

yes no

CCD

input

Zero-bias adjust

DCT

Quantize

Archive in memory

More 

8×8 

blocks?

Transmit serially

yes

no Done?
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Informal functional specification

serial output

e.g., 011010...

yes no

CCD

input
Zero-bias 

adjust

DCT

Quantize

Archive in memory

More 

8×8 

blocks?

Transmit serially

yes

no Done?
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Refined functional specification

• Refine informal specification 
into one that can actually be 
executed

• Can use C-like code to 
describe each function

– Called system-level model, 
prototype, or simply model

– Also is first implementation

image file

10101101011

01010100101

01101...

CCD.C

CNTRL.C

UART.C

output file

10101010101

01010101010

101010...

CODEC.CCCDPP.C

Executable model of digital camera
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Executable model of digital camera

image file

101011010110101010010101101... CCD.C

CNTRL.C

UART.C

output file

1010101010101010101010101010.

..

CODEC.CCCDPP.C
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Refined functional specification…

• Provides insight into operations of system
– Profiling finds computationally intensive functions

• Can obtain sample output used to verify 
correctness of final implementation
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CCD module

• Simulates real CCD

• CcdInitialize is passed name of image file

• CcdCapture reads “image” 

     from file into buffer

• CcdPopPixel outputs pixels one at a time

     from buffer
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CCDPP (CCD PreProcessing) module

• Performs zero-bias adjustment

• CcdppCapture uses 

     CcdCapture and 

     CcdPopPixel to obtain image

• Performs zero-bias adjustment 

     after each row read in
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CCDPP (CCD PreProcessing) module
• Performs zero-bias adjustment

• CcdppCapture uses CcdCapture and CcdPopPixel to 
obtain image

• Performs zero-bias adjustment after each row read in

#define SZ_ROW      64

#define SZ_COL      64

static char buffer[SZ_ROW][SZ_COL];

static unsigned rowIndex, colIndex;

void CcdppInitialize() {

    rowIndex = -1;

    colIndex = -1;

}

void CcdppCapture(void) {

    char bias;

    CcdCapture();

    for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

        for(colIndex=0; colIndex<SZ_COL; colIndex++) {

            buffer[rowIndex][colIndex] = CcdPopPixel();

        }

        bias = (CcdPopPixel() + CcdPopPixel()) / 2;     

        for(colIndex=0; colIndex<SZ_COL; colIndex++) {

            buffer[rowIndex][colIndex] -= bias;

        }

    }

    rowIndex = 0;

    colIndex = 0;

}

char CcdppPopPixel(void) {

    char pixel;

    pixel = buffer[rowIndex][colIndex];

    if( ++colIndex == SZ_COL ) {

        colIndex = 0;

        if( ++rowIndex == SZ_ROW ) {

            colIndex = -1;

            rowIndex = -1;

        }

    }

    return pixel;

}
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Executable model of digital camera

image file

101011010110101010010101101... CCD.C

CNTRL.C

UART.C

output file

1010101010101010101010101010.

..

CODEC.CCCDPP.C
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UART module

• Actually a half UART

– Only transmits, does not receive

• UartInitialize is passed name of file to output to

• UartSend transmits (writes to output file) bytes at a time

#include <stdio.h>

static FILE *outputFileHandle;

void UartInitialize(const char *outputFileName) {

    outputFileHandle = fopen(outputFileName, "w");

}

void UartSend(char d) {

    fprintf(outputFileHandle, "%i\n", (int)d);

}



©  Kavi Arya                                           IIT Bombay                                                       53

CODEC module

• Models FDCT* encoding

• ibuffer holds original 8 x 8 block

• obuffer holds encoded 8 x 8 block

• CodecPushPixel called 64x to fill ibuffer w/original block

• CodecDoFdct called once to transform 8 x 8 block

– Explained in next slide

• CodecPopPixel called 64 times to retrieve encoded block 

from obuffer

*Forward Discrete Cosine Transform
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CODEC module

• Models FDCT encoding

• ibuffer holds original 8 x 8 block

• obuffer holds encoded 8 x 8 block

• CodecPushPixel called 64 times to 

fill ibuffer with original block

• CodecDoFdct called once to 

transform 8 x 8 block

– Explained in next slide

• CodecPopPixel called 64 times to 

retrieve encoded block from obuffer

static short ibuffer[8][8], obuffer[8][8], idx;

void CodecInitialize(void) { idx = 0; }

void CodecDoFdct(void) {

    int x, y;

    for(x=0; x<8; x++) {

        for(y=0; y<8; y++) 

 obuffer[x][y] = FDCT(x, y, ibuffer);

    }

    idx = 0;

}

void CodecPushPixel(short p) {

    if( idx == 64 ) idx = 0;

    ibuffer[idx / 8][idx % 8] = p; idx++;

}

short CodecPopPixel(void) {

    short p;

    if( idx == 64 ) idx = 0;

    p = obuffer[idx / 8][idx % 8]; idx++;

    return p;

}
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FDCT (Forward DCT) formula 

C(h) = if (h == 0) then 1/sqrt(2) else 1.0

• Auxiliary function used in main function F(u,v)

F(u,v) = ¼ x C(u) x C(v) 

   Σx=0..7 Σy=0..7 Dxy x  cos(π(2x + 1)u/16) x cos(π(2y + 1)v/16)

=           ¼ x C(u) x C(v) 

   Σx=0..7 cos(π(2x + 1)u/16) x Σy=0..7 Dxy x  cos(π(2y + 1)v/16)

• Gives encoded pixel at row u, column v

• Dxy is original pixel value at row x, column y
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CODEC…

• Implementing FDCT formula

• Only 64 possible inputs to COS, so table can be 
used to save performance time

– Floating-point values multiplied by 32,678 and rounded 
to nearest integer

– 32,678 chosen to store each value in 2 bytes of memory

– Fixed-point representation explained more later

• FDCT unrolls inner loop of summation, 
implements outer summation as two 
consecutive for loops
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CODEC…
• Implementing FDCT formula

• Only 64 possible inputs to COS, so 
table can be used to save performance 
time

– Floating-point values multiplied by 
32,678 and rounded to nearest integer

– 32,678 chosen in order to store each 
value in 2 bytes of memory

– Fixed-point representation explained 
more later

• FDCT unrolls inner loop of summation, 
implements outer summation as two 
consecutive for loops

static const short COS_TABLE[8][8] = {

    { 32768,  32138,  30273,  27245,  23170,  18204,  12539,   6392 },

    { 32768,  27245,  12539,  -6392, -23170, -32138, -30273, -18204 },

    { 32768,  18204, -12539, -32138, -23170,   6392,  30273,  27245 },

    { 32768,   6392, -30273, -18204,  23170,  27245, -12539, -32138 },

    { 32768,  -6392, -30273,  18204,  23170, -27245, -12539,  32138 },

    { 32768, -18204, -12539,  32138, -23170,  -6392,  30273, -27245 },

    { 32768, -27245,  12539,   6392, -23170,  32138, -30273,  18204 },

    { 32768, -32138,  30273, -27245,  23170, -18204,  12539,  -6392 }

};

static int FDCT(int u, int v, short img[8][8]) {

    double s[8], r = 0; int x;

    for(x=0; x<8; x++) {

     s[x] = img[x][0] * COS(0, v) + img[x][1] * COS(1, v) + 

            img[x][2] * COS(2, v) + img[x][3] * COS(3, v) + 

            img[x][4] * COS(4, v) + img[x][5] * COS(5, v) +

            img[x][6] * COS(6, v) + img[x][7] * COS(7, v);

    }

    for(x=0; x<8; x++) r += s[x] * COS(x, u);

    return (short)(r * .25 * C(u) * C(v));

}

static short ONE_OVER_SQRT_TWO = 23170;

static double COS(int xy, int uv) {  

 return COS_TABLE[xy][uv] / 32768.0; 

}

static double C(int h) { 

 return h ? 1.0 : ONE_OVER_SQRT_TWO / 32768.0;

}
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Executable model of digital camera

image file

101011010110101010010101101... CCD.C

CNTRL.C

UART.C

output file

1010101010101010101010101010.

..

CODEC.CCCDPP.C



©  Kavi Arya                                           IIT Bombay                                                       59

CNTRL (controller) module

• Heart of the system

• CntrlCaptureImage uses CCDPP module to input image 

and place in buffer 

• CntrlCompressImage breaks the 64 x 64 buffer into 8 x 8 

blocks and performs FDCT on each block using the 

CODEC module

– Also performs quantization on each block

• CntrlSendImage transmits encoded image serially using 

UART module
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CNTRL (controller) module
• Heart of the system

• CntrlInitialize for consistency with other 

modules only

• CntrlCaptureImage uses CCDPP module to 

input image and place in buffer 

• CntrlCompressImage breaks the 64 x 64 buffer 

into 8 x 8 blocks and performs FDCT on each 

block using the CODEC module

– Also performs quantization on each block

• CntrlSendImage transmits encoded image 

serially using UART module

void CntrlSendImage(void) {

    for(i=0; i<SZ_ROW; i++)

        for(j=0; j<SZ_COL; j++) {

            temp = buffer[i][j];

            UartSend(((char*)&temp)[0]);    /* send upper byte */

            UartSend(((char*)&temp)[1]);    /* send lower byte */
        }
    }   
}

#define SZ_ROW          64

#define SZ_COL          64

#define NUM_ROW_BLOCKS  (SZ_ROW / 8)

#define NUM_COL_BLOCKS  (SZ_COL / 8)

static short buffer[SZ_ROW][SZ_COL], i, j, k, l, temp;

void CntrlInitialize(void) {}

void CntrlCaptureImage(void) {

    CcdppCapture();

    for(i=0; i<SZ_ROW; i++)

        for(j=0; j<SZ_COL; j++)

            buffer[i][j] = CcdppPopPixel();

}

void CntrlCompressImage(void) {

    for(i=0; i<NUM_ROW_BLOCKS; i++)

        for(j=0; j<NUM_COL_BLOCKS; j++) {

            for(k=0; k<8; k++)

                for(l=0; l<8; l++)

                    CodecPushPixel(

            (char)buffer[i * 8 + k][j * 8 + l]);

            CodecDoFdct();/* part 1 - FDCT */

            for(k=0; k<8; k++)

                for(l=0; l<8; l++) {

                    buffer[i * 8 + k][j * 8 + l] = CodecPopPixel();

                    /* part 2 - quantization */

        buffer[i*8+k][j*8+l] >>= 6; 

                }

        }

}
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Putting it all together

• Main initializes all modules, then uses CNTRL module to 

capture, compress, and transmit one image

• This system-level model can be used for extensive 

experimentation

– Bugs much easier to correct here rather than in later 

models int main(int argc, char *argv[]) {

    char *uartOutputFileName = argc > 1 ? argv[1] : "uart_out.txt";

    char *imageFileName = argc > 2 ? argv[2] : "image.txt";

    /* initialize the modules */

    UartInitialize(uartOutputFileName);

    CcdInitialize(imageFileName);

    CcdppInitialize();

    CodecInitialize();

    CntrlInitialize();

    /* simulate functionality */

    CntrlCaptureImage();

    CntrlCompressImage();

    CntrlSendImage();

}
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Design

• Determine system’s architecture

– Processors

• Any combination of single-purpose 

  (custom or standard) or general-purpose processors

– Memories, buses

• Map functionality to that architecture

– Multiple functions on one processor

– One function on one or more processors
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Design..
• Implementation

– A particular architecture and mapping

– Solution space is set of all implementations

• Starting point

– Low-end gen. purpose processor connected to flash memory

• All functionality mapped to software running on processor

• Usually satisfies power, size, time-to-market constraints

• If timing constraint not satisfied then try:

– use single-purpose processors for time-critical 
functions

– rewrite functional specification
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Implementation 1: Microcontroller alone

• Low-end processor could be Intel 8051 microcontroller
Today: RPi, ARM Cortex,…

• Total IC cost including NRE about $5

• Well below 200 mW power

• Time-to-market about 3 months

• However…
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Implementation 1: Microcontroller alone…

• However, one image per second not possible

– 12 MHz, 12 cycles per instruction

• Executes one million instructions per second

– CcdppCapture has nested loops => 4096 (64x64) iterations

• ~100 assembly instructions each iteration

• 409,000 (4096 x 100) instructions per image

• Half of budget for reading image alone

– Would be over budget after adding compute-intensive DCT 

and Huffman encoding



©  Kavi Arya                                           IIT Bombay                                                       67

Implementation 2: 
Microcontroller and CCDPP

8051

UART CCDPP

RAMEEPROM

SOC



©  Kavi Arya                                           IIT Bombay                                                       68

Implementation 2: 
Microcontroller and CCDPP

• CCDPP function on custom single-purpose processor

– Improves performance – less microcontroller cycles

– Increases NRE cost and time-to-market

– Easy to implement: Simple datapath, Few states in controller

• Simple UART easy to implement as single-purpose 
processor also

• EEPROM for program memory and RAM for data memory 
added as well

8051

UART CCDPP

RAMEEPROM

SOC
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Microcontroller

To External Memory Bus

Controller

4K ROM

128

RAM

Instruction 

Decoder

ALU

Block diagram of Intel 8051 processor core
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Microcontroller

• Synthesizable version of Intel 8051 available

– Written in VHDL 

– Captured at register transfer level (RTL)

• Fetches instruction from ROM

• Decodes using Instruction Decoder

• ALU executes arithmetic operations

– Source and destination registers reside in RAM

• Special data movement instructions used to load 
and store externally

• Special program generates VHDL description of 
ROM from output of C compiler/linker

To External Memory Bus

Controller

4K ROM

128

RAM

Instruction 

Decoder

ALU

Block diagram of Intel 8051 processor core
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Connecting SOC components

• Memory-mapped

– All single-purpose processors and RAM are connected to 

8051’s memory bus

• Read

– Processor places address on 16-bit address bus

– Asserts read control signal for 1 cycle

– Reads data from 8-bit data bus 1 cycle later

– Device (RAM or SPP) detects asserted read control signal

– Checks address

– Places and holds requested data on data bus for 1 cycle
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Connecting SOC components…

• Write

– Processor places address/data on address/data bus

– Asserts write control signal for 1 clock cycle

– Device (RAM or SPP) detects asserted write control signal

– Checks address bus

– Reads and stores data from data bus
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Software
• System-level model provides majority of code

– Module hierarchy, procedure names, and main program 
unchanged

• Code for UART and CCDPP modules must be redesigned

– Simply replace with memory assignments

• xdata used to load/store variables over ext. memory bus

• _at_ specifies memory address to store these variables

• Byte sent to U_TX_REG by processor will invoke UART

• U_STAT_REG used by UART to indicate its ready for 
next byte

– UART may be much slower than processor

– Similar modification for CCDPP code

• All other modules untouched
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Analysis

• Entire SOC tested on 

VHDL simulator

– Interprets VHDL descriptions 

and functionally simulates 

execution of system

• Recall program code 

translated to VHDL 

description of ROM

– Tests for correct functionality

– Measures clock cycles to 

process one image 

(performance)

Power

VHDL 

simulator

VHDL VHDL VHDL

Execution time

Synthesis 

tool

gates gates gates

Sum gates

Gate level 

simulator

Power 

equation

Chip area

Obtaining design metrics of interest
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Analysis…

• Gate-level description 
obtained through 
synthesis

– Synthesis tool like 
compiler for SPPs

– Simulate gate-level 
models to obtain data for 
power analysis

• Number of times gates 
switch from:
1 to 0 or 0 to 1

– Count number of gates 
for chip area

Power

VHDL 

simulator

VHDL VHDL VHDL

Execution time

Synthesis 

tool

gates gates gates

Sum gates

Gate level 

simulator

Power 

equation

Chip area

Obtaining design metrics of interest
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Implementation 2: 
Microcontroller and CCDPP

• Analysis of implementation 2

– Total execution time for processing one image: 

• 9.1 seconds

– Power consumption: 

• 0.033 watt

– Energy consumption: 

• 0.30 joule (9.1 s x 0.033 watt)

– Total chip area: 

• 98,000 gates
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Implementation 3: Microcontroller and 
CCDPP/Fixed-Point DCT

• 9.1 seconds still doesn’t meet performance 
constraint of 1 second

• DCT opn prime candidate for improvement

– Execution of implementation 2 shows microprocessor 
spends most cycles here

– Could design custom hardware like we did for CCDPP

• More complex so more design effort

– Instead, will speed up DCT functionality by modifying 
behavior



©  Kavi Arya                                           IIT Bombay                                                       81

DCT floating-point cost

• Floating-point cost

– DCT uses ~260 F.Pt. operations per pixel transformation

– 4096 (64 x 64) pixels per image

– 1 million floating-point operations per image

– No floating-point support with Intel 8051
• Compiler must emulate

– Generates procedures for each floating-point operation

» mult, add

– Each procedure uses tens of integer operations

– Thus, > 10 million integer operations per image

– Procedures increase code size

• Fixed-point arithmetic can improve on this 
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Fixed-point arithmetic

• Integer used to represent a real number

– Constant number of integer’s bits represents 

fractional portion of real number

• More bits, more accurate the 

representation

– Remaining bits represent portion of real 

number before decimal point
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Fixed-point arithmetic…

Translating a real constant to a fixed-point representation

– Multiply real value by 2 ^ (# of bits used for fractional part)

– Round to nearest integer

– E.g., represent 3.14 as 8-bit integer with 4 bits for fraction

• 2^4 = 16

• 3.14 x 16 = 50.24 ≈ 50 = 00110010

• 16 (2^4) possible values for fraction, each represents 0.0625 (1/16)

• Last 4 bits (0010) = 2

• 2 x 0.0625 = 0.125

• 3(0011) + 0.125 = 3.125 ≈ 3.14 (more bits for fraction would increase 

accuracy)
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Fixed-point arithmetic operations

• Addition

– Simply add integer representations

– E.g., 3.14 + 2.71 = 5.85

• 3.14 → 50 = 00110010

• 2.71 → 43 = 00101011

• 50 + 43 = 93 = 01011101

• 5(0101) + 13(1101) x 0.0625 = 5.8125 ≈ 5.85

• Multiply

– Multiply integer representations

– Shift result right by # of bits in fractional part

– E.g., 3.14 * 2.71 = 8.5094

• 50 * 43 = 2150 = 100001100110

• >> 4 = 10000110

• 8(1000) + 6(0110) x 0.0625 = 8.375 ≈ 8.5094

• Range of real values used limited by bit widths of possible 
resulting values
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Fixed-point implementation of CODEC

• COS_TABLE gives 8-bit fixed-
point representation of cosine 
values

• 6 bits used for fractional portion

• Result of multiplications shifted 
right by 6

void CodecDoFdct(void) {

    unsigned short x, y;

    for(x=0; x<8; x++)

        for(y=0; y<8; y++)

            outBuffer[x][y] = F(x, y, inBuffer);

    idx = 0;

}

static const char code COS_TABLE[8][8] = {

    {   64,   62,   59,   53,   45,   35,   24,   12 },

    {   64,   53,   24,  -12,  -45,  -62,  -59,  -35 },

    {   64,   35,  -24,  -62,  -45,   12,   59,   53 },

    {   64,   12,  -59,  -35,   45,   53,  -24,  -62 },

    {   64,  -12,  -59,   35,   45,  -53,  -24,   62 },

    {   64,  -35,  -24,   62,  -45,  -12,   59,  -53 },

    {   64,  -53,   24,   12,  -45,   62,  -59,   35 },

    {   64,  -62,   59,  -53,   45,  -35,   24,  -12 }

};

static const char ONE_OVER_SQRT_TWO = 5;

static short xdata inBuffer[8][8], outBuffer[8][8], idx;

void CodecInitialize(void) { idx = 0; }

static unsigned char C(int h) { return h ? 64 : ONE_OVER_SQRT_TWO;}

static int F(int u, int v, short img[8][8]) {

    long s[8], r = 0;

    unsigned char x, j;

    for(x=0; x<8; x++) {

        s[x] = 0;

        for(j=0; j<8; j++) 

            s[x] += (img[x][j] * COS_TABLE[j][v] ) >> 6;

    }

    for(x=0; x<8; x++) r += (s[x] * COS_TABLE[x][u]) >> 6;

    return (short)((((r * (((16*C(u)) >> 6) *C(v)) >> 6)) >> 6) >> 6);

}

void CodecPushPixel(short p) {

    if( idx == 64 ) idx = 0;

    inBuffer[idx / 8][idx % 8] = p << 6; idx++;

}
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Implementation 3: Microcontroller and 
CCDPP/Fixed-Point DCT

• Analysis of implementation 3
– Use same analysis techniques as implementation 2

– Total execution time for processing one image:

• 1.5 seconds

– Power consumption: 

• 0.033 watt (same as 2)

– Energy consumption: 

• 0.050 joule (1.5 s x 0.033 watt)

• Battery life 6x longer!!

– Total chip area: 

• 90,000 gates

• 8,000 less gates (less memory needed for code)
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Implementation 4:
Microcontroller and CCDPP/DCT

• Performance close but not good enough

• Must resort to implementing CODEC in 

hardware

– Single-purpose processor to perform DCT on 8 x 8 

block

8051

UART CCDP

P

RAMEEPROM

SOC
CODEC
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CODEC design

• 4 memory mapped registers

– C_DATAI_REG/C_DATAO_REG 

    used to push/pop 8 x 8 block into and out of CODEC

– C_CMND_REG used to command CODEC

• Writing 1 to this register invokes CODEC

– C_STAT_REG indicates CODEC done and ready for 
next block

• Polled in software

• Direct translation of C code to VHDL for actual 
hardware implementation

– Fixed-point version used

• CODEC module in software changed similar to 
UART/CCDPP in implementation 2

static unsigned char xdata C_STAT_REG _at_ 65527;

static unsigned char xdata C_CMND_REG _at_ 65528;

static unsigned char xdata C_DATAI_REG _at_ 65529;

static unsigned char xdata C_DATAO_REG _at_ 65530;

void CodecInitialize(void) {}

void CodecPushPixel(short p) { C_DATAO_REG = (char)p; }

short CodecPopPixel(void) {

    return ((C_DATAI_REG << 8) | C_DATAI_REG);

}

void CodecDoFdct(void) {

    C_CMND_REG = 1;

    while( C_STAT_REG == 1 ) { /* busy wait */ }

}

Rewritten CODEC software



©  Kavi Arya                                           IIT Bombay                                                       89

Implementation 4:
Microcontroller and CCDPP/DCT

• Analysis of implementation 4
– Total execution time for processing one image:

• 0.099 seconds (well under 1 sec)

– Power consumption: 

• 0.040 watt

• Increase over 2 and 3 because SOC has another 
processor

– Energy consumption: 

• 0.00040 joule (0.099 s x 0.040 watt)

• Battery life 12x longer than previous implementation!!

– Total chip area: 

• 128,000 gates, significant increase over previous 
implementations
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Summary of 
implementations

• Implementation 3 

– Close in performance

– Cheaper

– Less time to build

• Implementation 4

– Great performance and energy consumption

– More expensive and may miss time-to-market window

• If DCT designed ourselves then increased NRE cost and 
time-to-market

• If existing DCT purchased then increased IC cost

• Which is better?

Impl 2 Impl 3 Impl 4

Performance 

(second) 9.1 1.5 0.099

Power (watt) 0.033 0.033 0.040

Size (gate) 98,000 90,000 128,000

Energy (joule) 0.30 0.050 0.0040
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Digital Camera -- Summary

• Digital camera example

– Specifications in English and executable language

– Design metrics: performance, power and area

• Several implementations

– Microcontroller: too slow

– Microcontroller and coprocessor: better, but still too slow

– Fixed-point arithmetic: almost fast enough

– Additional coprocessor for compression: fast enough, but 

expensive and hard to design

– Tradeoffs between hw/sw – the main lesson of this course!
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Examples of Embedded Systems

We looked at details of 

• A simple Digital Camera

We will study 
microcontroller prog. with 

• Atmega 2560 
Microcontroller & ESP32 
(to be studied in microcontroller 
workshop)

The world gets exciting…

• Apple iPad, intelligent 
transportation systems, 
service robots, …

20

http://www.kodak.com/US/en/digital/dlc/book2/chapter6/indexflash.shtml
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e-
Yantra 
Sensing 
Platform

● For IoT applications
● LORA based comm
● Interface w/ variety of sensors
● Low-power

Agri-Edge | Mobile Sense 
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