
© Kavi Arya IIT Bombay 1

CS684

Embedded Systems (Software)

Embedded Applications

Kavi Arya

Paritosh Pandya

CSE/ IIT Bombay

© Kavi Arya IIT Bombay 2

Examples of Embedded Systems

We look at details of
• Simple Digital Camera

© Kavi Arya IIT Bombay 3

Embedded Applications

They are everywhere!

• Wristwatches, washing machines,

• Microwave ovens,

• Elevators, mobiles, printers

• Telephone exchanges,

• Automobiles, aircrafts, …

© Kavi Arya IIT Bombay 4

Common Design Metrics

• NRE (Non-recurring engineering) cost

• Unit cost

• Size (bytes, gates)

• Performance (execution time)

• Power (more power=> more heat & less battery time)

• Flexibility (ability to change functionality)

• Time to prototype

• Time to market

• Maintainability

• Correctness

• Safety (probability that system won’t cause harm)

© Kavi Arya IIT Bombay 5

Embedded Apps

• A modern home

– Has a few general purpose PCs/laptops

– But dozens of embedded systems.

• More prevalent in industrial sectors

– 10’s of embedded computers in modern

automobiles

– Chemical and nuclear power plants

© Kavi Arya IIT Bombay 6

Embedded Applications

An embedded system typically has a digital signal

processor and a variety of I/O devices connected to

sensors and actuators.

Computer (controller)

surrounded by other subsystems, sensors and actuators

Computer -- Controller's function is :

• Monitor parameters of physical processes of “environment”

• Control these processes whenever needed.

© Kavi Arya IIT Bombay 7

Simple Examples

A simple thermostat controller

• Periodically reads temperature of chamber

• Switches on or off the cooling system.

A pacemaker

• Constantly monitors the heart

• Paces heart when heart beats are missed

© Kavi Arya IIT Bombay 8

1. Digital Camera: An Embedded System

• Introduction to simple digital camera

• Requirements specification

• Designer’s perspective

• Design exploration

20

Embedded System Design: Frank Vahid/ Tony Givargis
(John Wiley & Sons, Inc.2014)

http://www.kodak.com/US/en/digital/dlc/book2/chapter6/indexflash.shtml

© Kavi Arya IIT Bombay 9

Requirements Specification

• System’s reqmts – what system should do

– Nonfunctional requirements

• Constraints on design metrics
(e.g., “should use 0.001 watt or less”)

– Functional requirements

• System’s behavior
(e.g., “output X to be input Y times 2”)

– ….

© Kavi Arya IIT Bombay 10

Requirements Specification…

Initial specification may be general and come

from marketing dept.

• E.g., short document detailing market need for a low-

end digital camera that:
– Captures/ stores at least 50 low-res images and uploads to PC,

– Costs around $100 with single medium-size IC costing < $25,

– As long as possible battery life,

– Expected sales volume of 200,000 if market entry < 6 months,

– 100,000 if between 6 and 12 months,

– Insignificant sales beyond 12 months

© Kavi Arya IIT Bombay 11

Nonfunctional requirements

• Design metrics of importance based on

initial specification

– Performance: time required to process image

– Size: number of elementary logic gates (2-input

NAND gate) in IC

– Power: measure of avg. electrical energy

consumed while processing

– Energy: battery lifetime (power x time)

© Kavi Arya IIT Bombay 12

Nonfunctional requirements…

• Constrained metrics

– Values must be below (sometimes above)

certain threshold

• Optimization metrics

– Improve as much as possible to improve product

• Metric can be both constrained and

optimization

© Kavi Arya IIT Bombay 13

Nonfunctional requirements…

• Power

– Must operate below certain temperature
(cooling fan not possible)

– Therefore, constrained metric

• Energy
– Reducing power or time reduces energy

– Optimized metric: battery to last as long as
possible

© Kavi Arya IIT Bombay 14

Nonfunctional requirements…

• Performance

– Must process image fast enough to be useful

– 1 sec reasonable constraint

• Slower would be annoying

• Faster not necessary for low-end of market

– Therefore, constrained metric

• Size

– Must use IC that fits in reasonably sized camera

– Constrained and optimization metric

• Constraint may be 1M gates, but smaller would be cheaper

© Kavi Arya IIT Bombay 15

Example: Panasonic Lumix DMC TZ5

• 9.1 effective Megapixels

• 28-280mm equiv lens, 10x optical zoom & 4x Digital Zoom

• 3.0-inch LCD with 460,000 dots resolution

• Optical Image Stabilizer

• ISO sensitivity up to 6400

• Face Detection AF

• 6 shooting modes, 23 scene modes inc. Intelligent Auto mode

• Venus Engine IV processor

• HD output

• In-Camera Editing

$300

© Kavi Arya IIT Bombay 16

1. Digital Camera: An Embedded System

Design

– Four implementations

– Issues:

• General-purpose vs. single-
purpose processors?

• Partitioning of functionality
among different processor
types?

20

http://www.kodak.com/US/en/digital/dlc/book2/chapter6/indexflash.shtml

© Kavi Arya IIT Bombay 17

Functional Design & Mapping

HW1 HW2 HW3 HW4

Hardware Interface

RTOS/Drivers

T
h
re

a

d

Architectural

Design

F1
F2

F3

F4

F5
Functional

Design

(F3) (F4)

(F5)

(F2)

Source:

Ian Phillips, ARM

VSIA 2001

© Kavi Arya IIT Bombay 18

Introduction to a simple digital camera

• Captures images

• Stores images in digital format
– Multiple images stored in camera

• Number depends on memory and bits/image

• Downloads images to PC
– Serial comm (USB, etc.)

– Wireless (Bluetooth, 802.11, …)

© Kavi Arya IIT Bombay 19

Introduction to a simple digital camera…

• Only possible in couple of decades

– Systems-on-a-chip

• Multiple processors and memories on one IC

– High-capacity flash memory

• Very simple description used for example

– Many more features with real digital camera

• Variable size images, image deletion, digital stretching,

zooming in and out, etc.

© Kavi Arya IIT Bombay 20

Designer’s perspective

• Two key tasks

1. Processing images and storing in memory

• When shutter pressed:

– Image captured

– Converted to digital form by charge-coupled device

(CCD)

– Compressed and archived in internal memory

2. Uploading images to PC

• Digital camera attached to PC

• Software to transmit archived images serially

© Kavi Arya IIT Bombay 21

Charge-coupled device (CCD)
• Special sensor that captures an image

• Light-sensitive silicon solid-state device composed of
many cells

Light

charge

8-bit value:

0 => no exposure

255=> intense light

Some columns

covered with

black strip.

Light-intensity

here used for zero-

bias adjustment

Electromechanical shutter

activates to expose cells to

light

Circuitry discharges cells,

activates shutter, reads 8-

bit value of each cell.

Values clocked out of CCD

by external logic through

std parallel bus interface.

Lens area

Pixel columns

Covered columns

Electronic

circuitry

Electro-

mechanical

shutter

P
ix

e
l
ro

w
s

© Kavi Arya IIT Bombay 22

Zero-bias error

• Manufacturing errors cause cells to measure

slightly above or below actual light intensity

• Error typically same across columns, but different

across rows

• Some of left most columns blocked by black paint

to detect zero-bias error

– Reading of non-zero in blocked cells is zero-bias error

– Each row corrected by subtracting avg error in blocked cells

for that row

© Kavi Arya IIT Bombay 23

Zero-bias error…

123 157 142 127 131 102 99 235

134 135 157 112 109 106 108 136

135 144 159 108 112 118 109 126

176 183 161 111 186 130 132 133

137 149 154 126 185 146 131 132

121 130 127 146 205 150 130 126

117 151 160 181 250 161 134 125

168 170 171 178 183 179 112 124

136 170 155 140 144 115 112 248 12 14

145 146 168 123 120 117 119 147 12 10

144 153 168 117 121 127 118 135 9 9

176 183 161 111 186 130 132 133 0 0

144 156 161 133 192 153 138 139 7 7

122 131 128 147 206 151 131 127 2 0

121 155 164 185 254 165 138 129 4 4

173 175 176 183 188 184 117 129 5 5

Covered cells

Before zero-bias adjustment After zero-bias adjustment

-13

-11

-9

0

-7

-1

-4

-5

Zero-bias

adjustment

© Kavi Arya IIT Bombay 24

Compression

• Store more images

• Transmit image to PC in less time

• JPEG (Joint Photographic Experts Group)

© Kavi Arya IIT Bombay 25

Compression…

JPEG (Joint Photographic Experts Group)

– Popular standard format for representing digital images in a

compressed form

– Provides for a number of different modes of operation

– Sequential Mode used here provides high compression

ratios using DCT (Discrete Cosine Transform)

(others are -- progressive, lossless, hierarchical)

– Image data divided into blocks of 8 x 8 pixels

– 3 steps performed on each block

 DCT, Quantization, Huffman encoding

© Kavi Arya IIT Bombay 26

DCT step

• Transforms original 8 x 8 block into a
cosine-frequency domain

– Upper-left corner values represent more of
essence of image

 (Average for the image)

– Lower-right corner values represent finer details

• Can reduce precision of these values and
retain reasonable image quality

• Quantize – many may become 0

© Kavi Arya IIT Bombay 27

DCT step…

• FDCT (Forward DCT) formula
– C(h) = if (h == 0) then 1/sqrt(2) else 1.0

• Auxiliary function used in main function F(u,v)

– F(u,v) = ¼ x C(u) x C(v) Σx=0..7 Σy=0..7 Dxy x cos(π(2u +
1)u/16) x cos(π(2y + 1)v/16)

• Gives encoded pixel at row u, column v

• Dxy is original pixel value at row x, column y

• IDCT (Inverse DCT)

– Reverses process to obtain original block (not
needed for this design)

© Kavi Arya IIT Bombay 28

Quantization step

• Achieve high compression ratio by

reducing image quality

– Reduce bit precision of encoded data

• Fewer bits needed for encoding

• One way is divide all values by factor of 2

–Simple right shifts can do this

–General: table driven mapping

– Dequantization reverses process for

decompression

© Kavi Arya IIT Bombay 29

Quantization step…

1150 39 -43 -10 26 -83 11 41

-81 -3 115 -73 -6 -2 22 -5

14 -11 1 -42 26 -3 17 -38

2 -61 -13 -12 36 -23 -18 5

44 13 37 -4 10 -21 7 -8

36 -11 -9 -4 20 -28 -21 14

-19 -7 21 -6 3 3 12 -21

-5 -13 -11 -17 -4 -1 7 -4

144 5 -5 -1 3 -10 1 5

-10 0 14 -9 -1 0 3 -1

2 -1 0 -5 3 0 2 -5

0 -8 -2 -2 5 -3 -2 1

6 2 5 -1 1 -3 1 -1

5 -1 -1 -1 3 -4 -3 2

-2 -1 3 -1 0 0 2 -3

-1 -2 -1 -2 -1 0 1 -1
After being decoded using DCT After quantization

Divide

each cell’s

value by

8

© Kavi Arya IIT Bombay 30

• Serialize 8 x 8 block of pixels

– Values are converted into single list using

 zigzag pattern

Huffman encoding step

Usually, first item of blocks are stored differentially

Zigzag brings equal values together => run-length encoding

© Kavi Arya IIT Bombay 31

• Perform Huffman encoding

– More frequently occurring pixels assigned

short binary code

– Longer binary codes left for less frequently

occurring pixels

• Each pixel in serial list converted to

Huffman encoded values

– Much shorter list, thus compression

Huffman encoding step…

© Kavi Arya IIT Bombay 32

Huffman encoding example…

• Pixel frequencies on left table:
– Pixel value –1 occurs 15 times

– Pixel value 14 occurs 1 time

• Build Huffman tree from bot up
– Create one leaf node for each

pixel value and assign frequency
as node’s value

– Create internal node by joining any
two nodes whose sum is a minimal
value. This sum is internal node’s
value

– Repeat until complete binary tree

• Traverse tree from root to leaf to
obtain binary code for leaf’s
pixel value

– Append 0 for left traversal, 1 for
right traversal

• Huffman encoding is reversible
– No code is prefix of another code

144

5 3 2

1 0 -2

-1

-10 -5 -3

-4 -8 -9614

1 1

2

1 1

2

1

2
2

4

3

5

4

6
5

9

5

1

0

5

11

5

14

6

17

8

18
15

29

35

64

1

-1 00

0 100

-2 110

1 010

2 1110

3 1010

5 0110

-3 11110

-5 10110

-10 01110

144 111111

-9 111110

-8 101111

-4 101110

6 011111

14 011110

Pixel

frequencies
Huffman tree

Huffman

codes

© Kavi Arya IIT Bombay 33

Archive step

• Record starting address and image size

– Can use linked list

• One possible way to archive images

– If max number of images archived is N:

• Set aside memory for N addresses and N image-size variables

• Keep counter for location of next available address

• Initialize addresses and image-size variables to 0

• Set global memory address to N x 4

– Assuming addresses, image-size variables occupy N x 4 bytes

• First image archived starting at address N x 4

• Global memory address updated to N x 4 + (compressed image size)

• Memory requirement based on:

– N, image size, and average compression ratio

© Kavi Arya IIT Bombay 34

Uploading to PC

• When connected to PC and upload

command received

– Read images from memory

– Transmit serially using UART*

– While transmitting

• Reset pointers, image-size variables

and global memory pointer accordingly

*UART (Universal Asynchronous Receiver Transmitter)

© Kavi Arya IIT Bombay 35

Informal functional specification

• Flowchart breaks

functionality down into

simpler functions

• Each function’s details

described in English

• Low quality image has

resolution of 64 x 64

• Mapping functions to a

particular processor type

not done at this stage

serial output

e.g., 011010...

yes no

CCD

input

Zero-bias adjust

DCT

Quantize

Archive in memory

More

8×8

blocks?

Transmit serially

yes

no Done?

© Kavi Arya IIT Bombay 36

Informal functional specification

serial output

e.g., 011010...

yes no

CCD

input
Zero-bias

adjust

DCT

Quantize

Archive in memory

More

8×8

blocks?

Transmit serially

yes

no Done?

© Kavi Arya IIT Bombay 37

Refined functional specification

• Refine informal specification
into one that can actually be
executed

• Can use C-like code to
describe each function

– Called system-level model,
prototype, or simply model

– Also is first implementation

image file

10101101011

01010100101

01101...

CCD.C

CNTRL.C

UART.C

output file

10101010101

01010101010

101010...

CODEC.CCCDPP.C

Executable model of digital camera

© Kavi Arya IIT Bombay 38

Executable model of digital camera

image file

101011010110101010010101101... CCD.C

CNTRL.C

UART.C

output file

1010101010101010101010101010.

..

CODEC.CCCDPP.C

© Kavi Arya IIT Bombay 39

Refined functional specification…

• Provides insight into operations of system
– Profiling finds computationally intensive functions

• Can obtain sample output used to verify
correctness of final implementation

© Kavi Arya IIT Bombay 40

CCD module

• Simulates real CCD

• CcdInitialize is passed name of image file

• CcdCapture reads “image”

 from file into buffer

• CcdPopPixel outputs pixels one at a time

 from buffer

© Kavi Arya IIT Bombay 47

CCDPP (CCD PreProcessing) module

• Performs zero-bias adjustment

• CcdppCapture uses

 CcdCapture and

 CcdPopPixel to obtain image

• Performs zero-bias adjustment

 after each row read in

© Kavi Arya IIT Bombay 48

CCDPP (CCD PreProcessing) module
• Performs zero-bias adjustment

• CcdppCapture uses CcdCapture and CcdPopPixel to
obtain image

• Performs zero-bias adjustment after each row read in

#define SZ_ROW 64

#define SZ_COL 64

static char buffer[SZ_ROW][SZ_COL];

static unsigned rowIndex, colIndex;

void CcdppInitialize() {

 rowIndex = -1;

 colIndex = -1;

}

void CcdppCapture(void) {

 char bias;

 CcdCapture();

 for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] = CcdPopPixel();

 }

 bias = (CcdPopPixel() + CcdPopPixel()) / 2;

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] -= bias;

 }

 }

 rowIndex = 0;

 colIndex = 0;

}

char CcdppPopPixel(void) {

 char pixel;

 pixel = buffer[rowIndex][colIndex];

 if(++colIndex == SZ_COL) {

 colIndex = 0;

 if(++rowIndex == SZ_ROW) {

 colIndex = -1;

 rowIndex = -1;

 }

 }

 return pixel;

}

© Kavi Arya IIT Bombay 50

Executable model of digital camera

image file

101011010110101010010101101... CCD.C

CNTRL.C

UART.C

output file

1010101010101010101010101010.

..

CODEC.CCCDPP.C

© Kavi Arya IIT Bombay 51

UART module

• Actually a half UART

– Only transmits, does not receive

• UartInitialize is passed name of file to output to

• UartSend transmits (writes to output file) bytes at a time

#include <stdio.h>

static FILE *outputFileHandle;

void UartInitialize(const char *outputFileName) {

 outputFileHandle = fopen(outputFileName, "w");

}

void UartSend(char d) {

 fprintf(outputFileHandle, "%i\n", (int)d);

}

© Kavi Arya IIT Bombay 53

CODEC module

• Models FDCT* encoding

• ibuffer holds original 8 x 8 block

• obuffer holds encoded 8 x 8 block

• CodecPushPixel called 64x to fill ibuffer w/original block

• CodecDoFdct called once to transform 8 x 8 block

– Explained in next slide

• CodecPopPixel called 64 times to retrieve encoded block

from obuffer

*Forward Discrete Cosine Transform

© Kavi Arya IIT Bombay 54

CODEC module

• Models FDCT encoding

• ibuffer holds original 8 x 8 block

• obuffer holds encoded 8 x 8 block

• CodecPushPixel called 64 times to

fill ibuffer with original block

• CodecDoFdct called once to

transform 8 x 8 block

– Explained in next slide

• CodecPopPixel called 64 times to

retrieve encoded block from obuffer

static short ibuffer[8][8], obuffer[8][8], idx;

void CodecInitialize(void) { idx = 0; }

void CodecDoFdct(void) {

 int x, y;

 for(x=0; x<8; x++) {

 for(y=0; y<8; y++)

 obuffer[x][y] = FDCT(x, y, ibuffer);

 }

 idx = 0;

}

void CodecPushPixel(short p) {

 if(idx == 64) idx = 0;

 ibuffer[idx / 8][idx % 8] = p; idx++;

}

short CodecPopPixel(void) {

 short p;

 if(idx == 64) idx = 0;

 p = obuffer[idx / 8][idx % 8]; idx++;

 return p;

}

© Kavi Arya IIT Bombay 55

FDCT (Forward DCT) formula

C(h) = if (h == 0) then 1/sqrt(2) else 1.0

• Auxiliary function used in main function F(u,v)

F(u,v) = ¼ x C(u) x C(v)

 Σx=0..7 Σy=0..7 Dxy x cos(π(2x + 1)u/16) x cos(π(2y + 1)v/16)

= ¼ x C(u) x C(v)

 Σx=0..7 cos(π(2x + 1)u/16) x Σy=0..7 Dxy x cos(π(2y + 1)v/16)

• Gives encoded pixel at row u, column v

• Dxy is original pixel value at row x, column y

© Kavi Arya IIT Bombay 56

CODEC…

• Implementing FDCT formula

• Only 64 possible inputs to COS, so table can be
used to save performance time

– Floating-point values multiplied by 32,678 and rounded
to nearest integer

– 32,678 chosen to store each value in 2 bytes of memory

– Fixed-point representation explained more later

• FDCT unrolls inner loop of summation,
implements outer summation as two
consecutive for loops

© Kavi Arya IIT Bombay 57

CODEC…
• Implementing FDCT formula

• Only 64 possible inputs to COS, so
table can be used to save performance
time

– Floating-point values multiplied by
32,678 and rounded to nearest integer

– 32,678 chosen in order to store each
value in 2 bytes of memory

– Fixed-point representation explained
more later

• FDCT unrolls inner loop of summation,
implements outer summation as two
consecutive for loops

static const short COS_TABLE[8][8] = {

 { 32768, 32138, 30273, 27245, 23170, 18204, 12539, 6392 },

 { 32768, 27245, 12539, -6392, -23170, -32138, -30273, -18204 },

 { 32768, 18204, -12539, -32138, -23170, 6392, 30273, 27245 },

 { 32768, 6392, -30273, -18204, 23170, 27245, -12539, -32138 },

 { 32768, -6392, -30273, 18204, 23170, -27245, -12539, 32138 },

 { 32768, -18204, -12539, 32138, -23170, -6392, 30273, -27245 },

 { 32768, -27245, 12539, 6392, -23170, 32138, -30273, 18204 },

 { 32768, -32138, 30273, -27245, 23170, -18204, 12539, -6392 }

};

static int FDCT(int u, int v, short img[8][8]) {

 double s[8], r = 0; int x;

 for(x=0; x<8; x++) {

 s[x] = img[x][0] * COS(0, v) + img[x][1] * COS(1, v) +

 img[x][2] * COS(2, v) + img[x][3] * COS(3, v) +

 img[x][4] * COS(4, v) + img[x][5] * COS(5, v) +

 img[x][6] * COS(6, v) + img[x][7] * COS(7, v);

 }

 for(x=0; x<8; x++) r += s[x] * COS(x, u);

 return (short)(r * .25 * C(u) * C(v));

}

static short ONE_OVER_SQRT_TWO = 23170;

static double COS(int xy, int uv) {

 return COS_TABLE[xy][uv] / 32768.0;

}

static double C(int h) {

 return h ? 1.0 : ONE_OVER_SQRT_TWO / 32768.0;

}

© Kavi Arya IIT Bombay 58

Executable model of digital camera

image file

101011010110101010010101101... CCD.C

CNTRL.C

UART.C

output file

1010101010101010101010101010.

..

CODEC.CCCDPP.C

© Kavi Arya IIT Bombay 59

CNTRL (controller) module

• Heart of the system

• CntrlCaptureImage uses CCDPP module to input image

and place in buffer

• CntrlCompressImage breaks the 64 x 64 buffer into 8 x 8

blocks and performs FDCT on each block using the

CODEC module

– Also performs quantization on each block

• CntrlSendImage transmits encoded image serially using

UART module

© Kavi Arya IIT Bombay 60

CNTRL (controller) module
• Heart of the system

• CntrlInitialize for consistency with other

modules only

• CntrlCaptureImage uses CCDPP module to

input image and place in buffer

• CntrlCompressImage breaks the 64 x 64 buffer

into 8 x 8 blocks and performs FDCT on each

block using the CODEC module

– Also performs quantization on each block

• CntrlSendImage transmits encoded image

serially using UART module

void CntrlSendImage(void) {

 for(i=0; i<SZ_ROW; i++)

 for(j=0; j<SZ_COL; j++) {

 temp = buffer[i][j];

 UartSend(((char*)&temp)[0]); /* send upper byte */

 UartSend(((char*)&temp)[1]); /* send lower byte */
 }
 }
}

#define SZ_ROW 64

#define SZ_COL 64

#define NUM_ROW_BLOCKS (SZ_ROW / 8)

#define NUM_COL_BLOCKS (SZ_COL / 8)

static short buffer[SZ_ROW][SZ_COL], i, j, k, l, temp;

void CntrlInitialize(void) {}

void CntrlCaptureImage(void) {

 CcdppCapture();

 for(i=0; i<SZ_ROW; i++)

 for(j=0; j<SZ_COL; j++)

 buffer[i][j] = CcdppPopPixel();

}

void CntrlCompressImage(void) {

 for(i=0; i<NUM_ROW_BLOCKS; i++)

 for(j=0; j<NUM_COL_BLOCKS; j++) {

 for(k=0; k<8; k++)

 for(l=0; l<8; l++)

 CodecPushPixel(

 (char)buffer[i * 8 + k][j * 8 + l]);

 CodecDoFdct();/* part 1 - FDCT */

 for(k=0; k<8; k++)

 for(l=0; l<8; l++) {

 buffer[i * 8 + k][j * 8 + l] = CodecPopPixel();

 /* part 2 - quantization */

 buffer[i*8+k][j*8+l] >>= 6;

 }

 }

}

© Kavi Arya IIT Bombay 62

Putting it all together

• Main initializes all modules, then uses CNTRL module to

capture, compress, and transmit one image

• This system-level model can be used for extensive

experimentation

– Bugs much easier to correct here rather than in later

models int main(int argc, char *argv[]) {

 char *uartOutputFileName = argc > 1 ? argv[1] : "uart_out.txt";

 char *imageFileName = argc > 2 ? argv[2] : "image.txt";

 /* initialize the modules */

 UartInitialize(uartOutputFileName);

 CcdInitialize(imageFileName);

 CcdppInitialize();

 CodecInitialize();

 CntrlInitialize();

 /* simulate functionality */

 CntrlCaptureImage();

 CntrlCompressImage();

 CntrlSendImage();

}

© Kavi Arya IIT Bombay 63

Design

• Determine system’s architecture

– Processors

• Any combination of single-purpose

 (custom or standard) or general-purpose processors

– Memories, buses

• Map functionality to that architecture

– Multiple functions on one processor

– One function on one or more processors

© Kavi Arya IIT Bombay 64

Design..
• Implementation

– A particular architecture and mapping

– Solution space is set of all implementations

• Starting point

– Low-end gen. purpose processor connected to flash memory

• All functionality mapped to software running on processor

• Usually satisfies power, size, time-to-market constraints

• If timing constraint not satisfied then try:

– use single-purpose processors for time-critical
functions

– rewrite functional specification

© Kavi Arya IIT Bombay 65

Implementation 1: Microcontroller alone

• Low-end processor could be Intel 8051 microcontroller
Today: RPi, ARM Cortex,…

• Total IC cost including NRE about $5

• Well below 200 mW power

• Time-to-market about 3 months

• However…

© Kavi Arya IIT Bombay 66

Implementation 1: Microcontroller alone…

• However, one image per second not possible

– 12 MHz, 12 cycles per instruction

• Executes one million instructions per second

– CcdppCapture has nested loops => 4096 (64x64) iterations

• ~100 assembly instructions each iteration

• 409,000 (4096 x 100) instructions per image

• Half of budget for reading image alone

– Would be over budget after adding compute-intensive DCT

and Huffman encoding

© Kavi Arya IIT Bombay 67

Implementation 2:
Microcontroller and CCDPP

8051

UART CCDPP

RAMEEPROM

SOC

© Kavi Arya IIT Bombay 68

Implementation 2:
Microcontroller and CCDPP

• CCDPP function on custom single-purpose processor

– Improves performance – less microcontroller cycles

– Increases NRE cost and time-to-market

– Easy to implement: Simple datapath, Few states in controller

• Simple UART easy to implement as single-purpose
processor also

• EEPROM for program memory and RAM for data memory
added as well

8051

UART CCDPP

RAMEEPROM

SOC

© Kavi Arya IIT Bombay 69

Microcontroller

To External Memory Bus

Controller

4K ROM

128

RAM

Instruction

Decoder

ALU

Block diagram of Intel 8051 processor core

© Kavi Arya IIT Bombay 70

Microcontroller

• Synthesizable version of Intel 8051 available

– Written in VHDL

– Captured at register transfer level (RTL)

• Fetches instruction from ROM

• Decodes using Instruction Decoder

• ALU executes arithmetic operations

– Source and destination registers reside in RAM

• Special data movement instructions used to load
and store externally

• Special program generates VHDL description of
ROM from output of C compiler/linker

To External Memory Bus

Controller

4K ROM

128

RAM

Instruction

Decoder

ALU

Block diagram of Intel 8051 processor core

© Kavi Arya IIT Bombay 73

Connecting SOC components

• Memory-mapped

– All single-purpose processors and RAM are connected to

8051’s memory bus

• Read

– Processor places address on 16-bit address bus

– Asserts read control signal for 1 cycle

– Reads data from 8-bit data bus 1 cycle later

– Device (RAM or SPP) detects asserted read control signal

– Checks address

– Places and holds requested data on data bus for 1 cycle

© Kavi Arya IIT Bombay 74

Connecting SOC components…

• Write

– Processor places address/data on address/data bus

– Asserts write control signal for 1 clock cycle

– Device (RAM or SPP) detects asserted write control signal

– Checks address bus

– Reads and stores data from data bus

© Kavi Arya IIT Bombay 75

Software
• System-level model provides majority of code

– Module hierarchy, procedure names, and main program
unchanged

• Code for UART and CCDPP modules must be redesigned

– Simply replace with memory assignments

• xdata used to load/store variables over ext. memory bus

• _at_ specifies memory address to store these variables

• Byte sent to U_TX_REG by processor will invoke UART

• U_STAT_REG used by UART to indicate its ready for
next byte

– UART may be much slower than processor

– Similar modification for CCDPP code

• All other modules untouched

© Kavi Arya IIT Bombay 77

Analysis

• Entire SOC tested on

VHDL simulator

– Interprets VHDL descriptions

and functionally simulates

execution of system

• Recall program code

translated to VHDL

description of ROM

– Tests for correct functionality

– Measures clock cycles to

process one image

(performance)

Power

VHDL

simulator

VHDL VHDL VHDL

Execution time

Synthesis

tool

gates gates gates

Sum gates

Gate level

simulator

Power

equation

Chip area

Obtaining design metrics of interest

© Kavi Arya IIT Bombay 78

Analysis…

• Gate-level description
obtained through
synthesis

– Synthesis tool like
compiler for SPPs

– Simulate gate-level
models to obtain data for
power analysis

• Number of times gates
switch from:
1 to 0 or 0 to 1

– Count number of gates
for chip area

Power

VHDL

simulator

VHDL VHDL VHDL

Execution time

Synthesis

tool

gates gates gates

Sum gates

Gate level

simulator

Power

equation

Chip area

Obtaining design metrics of interest

© Kavi Arya IIT Bombay 79

Implementation 2:
Microcontroller and CCDPP

• Analysis of implementation 2

– Total execution time for processing one image:

• 9.1 seconds

– Power consumption:

• 0.033 watt

– Energy consumption:

• 0.30 joule (9.1 s x 0.033 watt)

– Total chip area:

• 98,000 gates

© Kavi Arya IIT Bombay 80

Implementation 3: Microcontroller and
CCDPP/Fixed-Point DCT

• 9.1 seconds still doesn’t meet performance
constraint of 1 second

• DCT opn prime candidate for improvement

– Execution of implementation 2 shows microprocessor
spends most cycles here

– Could design custom hardware like we did for CCDPP

• More complex so more design effort

– Instead, will speed up DCT functionality by modifying
behavior

© Kavi Arya IIT Bombay 81

DCT floating-point cost

• Floating-point cost

– DCT uses ~260 F.Pt. operations per pixel transformation

– 4096 (64 x 64) pixels per image

– 1 million floating-point operations per image

– No floating-point support with Intel 8051
• Compiler must emulate

– Generates procedures for each floating-point operation

» mult, add

– Each procedure uses tens of integer operations

– Thus, > 10 million integer operations per image

– Procedures increase code size

• Fixed-point arithmetic can improve on this

© Kavi Arya IIT Bombay 82

Fixed-point arithmetic

• Integer used to represent a real number

– Constant number of integer’s bits represents

fractional portion of real number

• More bits, more accurate the

representation

– Remaining bits represent portion of real

number before decimal point

© Kavi Arya IIT Bombay 83

Fixed-point arithmetic…

Translating a real constant to a fixed-point representation

– Multiply real value by 2 ^ (# of bits used for fractional part)

– Round to nearest integer

– E.g., represent 3.14 as 8-bit integer with 4 bits for fraction

• 2^4 = 16

• 3.14 x 16 = 50.24 ≈ 50 = 00110010

• 16 (2^4) possible values for fraction, each represents 0.0625 (1/16)

• Last 4 bits (0010) = 2

• 2 x 0.0625 = 0.125

• 3(0011) + 0.125 = 3.125 ≈ 3.14 (more bits for fraction would increase

accuracy)

© Kavi Arya IIT Bombay 84

Fixed-point arithmetic operations

• Addition

– Simply add integer representations

– E.g., 3.14 + 2.71 = 5.85

• 3.14 → 50 = 00110010

• 2.71 → 43 = 00101011

• 50 + 43 = 93 = 01011101

• 5(0101) + 13(1101) x 0.0625 = 5.8125 ≈ 5.85

• Multiply

– Multiply integer representations

– Shift result right by # of bits in fractional part

– E.g., 3.14 * 2.71 = 8.5094

• 50 * 43 = 2150 = 100001100110

• >> 4 = 10000110

• 8(1000) + 6(0110) x 0.0625 = 8.375 ≈ 8.5094

• Range of real values used limited by bit widths of possible
resulting values

© Kavi Arya IIT Bombay 85

Fixed-point implementation of CODEC

• COS_TABLE gives 8-bit fixed-
point representation of cosine
values

• 6 bits used for fractional portion

• Result of multiplications shifted
right by 6

void CodecDoFdct(void) {

 unsigned short x, y;

 for(x=0; x<8; x++)

 for(y=0; y<8; y++)

 outBuffer[x][y] = F(x, y, inBuffer);

 idx = 0;

}

static const char code COS_TABLE[8][8] = {

 { 64, 62, 59, 53, 45, 35, 24, 12 },

 { 64, 53, 24, -12, -45, -62, -59, -35 },

 { 64, 35, -24, -62, -45, 12, 59, 53 },

 { 64, 12, -59, -35, 45, 53, -24, -62 },

 { 64, -12, -59, 35, 45, -53, -24, 62 },

 { 64, -35, -24, 62, -45, -12, 59, -53 },

 { 64, -53, 24, 12, -45, 62, -59, 35 },

 { 64, -62, 59, -53, 45, -35, 24, -12 }

};

static const char ONE_OVER_SQRT_TWO = 5;

static short xdata inBuffer[8][8], outBuffer[8][8], idx;

void CodecInitialize(void) { idx = 0; }

static unsigned char C(int h) { return h ? 64 : ONE_OVER_SQRT_TWO;}

static int F(int u, int v, short img[8][8]) {

 long s[8], r = 0;

 unsigned char x, j;

 for(x=0; x<8; x++) {

 s[x] = 0;

 for(j=0; j<8; j++)

 s[x] += (img[x][j] * COS_TABLE[j][v]) >> 6;

 }

 for(x=0; x<8; x++) r += (s[x] * COS_TABLE[x][u]) >> 6;

 return (short)((((r * (((16*C(u)) >> 6) *C(v)) >> 6)) >> 6) >> 6);

}

void CodecPushPixel(short p) {

 if(idx == 64) idx = 0;

 inBuffer[idx / 8][idx % 8] = p << 6; idx++;

}

© Kavi Arya IIT Bombay 86

Implementation 3: Microcontroller and
CCDPP/Fixed-Point DCT

• Analysis of implementation 3
– Use same analysis techniques as implementation 2

– Total execution time for processing one image:

• 1.5 seconds

– Power consumption:

• 0.033 watt (same as 2)

– Energy consumption:

• 0.050 joule (1.5 s x 0.033 watt)

• Battery life 6x longer!!

– Total chip area:

• 90,000 gates

• 8,000 less gates (less memory needed for code)

© Kavi Arya IIT Bombay 87

Implementation 4:
Microcontroller and CCDPP/DCT

• Performance close but not good enough

• Must resort to implementing CODEC in

hardware

– Single-purpose processor to perform DCT on 8 x 8

block

8051

UART CCDP

P

RAMEEPROM

SOC
CODEC

© Kavi Arya IIT Bombay 88

CODEC design

• 4 memory mapped registers

– C_DATAI_REG/C_DATAO_REG

 used to push/pop 8 x 8 block into and out of CODEC

– C_CMND_REG used to command CODEC

• Writing 1 to this register invokes CODEC

– C_STAT_REG indicates CODEC done and ready for
next block

• Polled in software

• Direct translation of C code to VHDL for actual
hardware implementation

– Fixed-point version used

• CODEC module in software changed similar to
UART/CCDPP in implementation 2

static unsigned char xdata C_STAT_REG _at_ 65527;

static unsigned char xdata C_CMND_REG _at_ 65528;

static unsigned char xdata C_DATAI_REG _at_ 65529;

static unsigned char xdata C_DATAO_REG _at_ 65530;

void CodecInitialize(void) {}

void CodecPushPixel(short p) { C_DATAO_REG = (char)p; }

short CodecPopPixel(void) {

 return ((C_DATAI_REG << 8) | C_DATAI_REG);

}

void CodecDoFdct(void) {

 C_CMND_REG = 1;

 while(C_STAT_REG == 1) { /* busy wait */ }

}

Rewritten CODEC software

© Kavi Arya IIT Bombay 89

Implementation 4:
Microcontroller and CCDPP/DCT

• Analysis of implementation 4
– Total execution time for processing one image:

• 0.099 seconds (well under 1 sec)

– Power consumption:

• 0.040 watt

• Increase over 2 and 3 because SOC has another
processor

– Energy consumption:

• 0.00040 joule (0.099 s x 0.040 watt)

• Battery life 12x longer than previous implementation!!

– Total chip area:

• 128,000 gates, significant increase over previous
implementations

© Kavi Arya IIT Bombay 90

Summary of
implementations

• Implementation 3

– Close in performance

– Cheaper

– Less time to build

• Implementation 4

– Great performance and energy consumption

– More expensive and may miss time-to-market window

• If DCT designed ourselves then increased NRE cost and
time-to-market

• If existing DCT purchased then increased IC cost

• Which is better?

Impl 2 Impl 3 Impl 4

Performance

(second) 9.1 1.5 0.099

Power (watt) 0.033 0.033 0.040

Size (gate) 98,000 90,000 128,000

Energy (joule) 0.30 0.050 0.0040

© Kavi Arya IIT Bombay 91

Digital Camera -- Summary

• Digital camera example

– Specifications in English and executable language

– Design metrics: performance, power and area

• Several implementations

– Microcontroller: too slow

– Microcontroller and coprocessor: better, but still too slow

– Fixed-point arithmetic: almost fast enough

– Additional coprocessor for compression: fast enough, but

expensive and hard to design

– Tradeoffs between hw/sw – the main lesson of this course!

© Kavi Arya IIT Bombay 92

Examples of Embedded Systems

We looked at details of

• A simple Digital Camera

We will study
microcontroller prog. with

• Atmega 2560
Microcontroller & ESP32
(to be studied in microcontroller
workshop)

The world gets exciting…

• Apple iPad, intelligent
transportation systems,
service robots, …

20

http://www.kodak.com/US/en/digital/dlc/book2/chapter6/indexflash.shtml

© Kavi Arya IIT Bombay 94

e-
Yantra
Sensing
Platform

● For IoT applications
● LORA based comm
● Interface w/ variety of sensors
● Low-power

Agri-Edge | Mobile Sense

	Slide 1: CS684 Embedded Systems (Software)
	Slide 2: Examples of Embedded Systems
	Slide 3: Embedded Applications
	Slide 4: Common Design Metrics
	Slide 5: Embedded Apps
	Slide 6: Embedded Applications
	Slide 7: Simple Examples
	Slide 8: 1. Digital Camera: An Embedded System
	Slide 9: Requirements Specification
	Slide 10: Requirements Specification…
	Slide 11: Nonfunctional requirements
	Slide 12: Nonfunctional requirements…
	Slide 13: Nonfunctional requirements…
	Slide 14: Nonfunctional requirements…
	Slide 15: Example: Panasonic Lumix DMC TZ5
	Slide 16: 1. Digital Camera: An Embedded System
	Slide 17: Functional Design & Mapping
	Slide 18: Introduction to a simple digital camera
	Slide 19: Introduction to a simple digital camera…
	Slide 20: Designer’s perspective
	Slide 21: Charge-coupled device (CCD)
	Slide 22: Zero-bias error
	Slide 23: Zero-bias error…
	Slide 24: Compression
	Slide 25: Compression…
	Slide 26: DCT step
	Slide 27: DCT step…
	Slide 28: Quantization step
	Slide 29: Quantization step…
	Slide 30: Huffman encoding step
	Slide 31: Huffman encoding step…
	Slide 32: Huffman encoding example…
	Slide 33: Archive step
	Slide 34: Uploading to PC
	Slide 35: Informal functional specification
	Slide 36: Informal functional specification
	Slide 37: Refined functional specification
	Slide 38: Executable model of digital camera
	Slide 39: Refined functional specification…
	Slide 40: CCD module
	Slide 47: CCDPP (CCD PreProcessing) module
	Slide 48: CCDPP (CCD PreProcessing) module
	Slide 50: Executable model of digital camera
	Slide 51: UART module
	Slide 53: CODEC module
	Slide 54: CODEC module
	Slide 55: FDCT (Forward DCT) formula
	Slide 56: CODEC…
	Slide 57: CODEC…
	Slide 58: Executable model of digital camera
	Slide 59: CNTRL (controller) module
	Slide 60: CNTRL (controller) module
	Slide 62: Putting it all together
	Slide 63: Design
	Slide 64: Design..
	Slide 65: Implementation 1: Microcontroller alone
	Slide 66: Implementation 1: Microcontroller alone…
	Slide 67: Implementation 2: Microcontroller and CCDPP
	Slide 68: Implementation 2: Microcontroller and CCDPP
	Slide 69: Microcontroller
	Slide 70: Microcontroller
	Slide 73: Connecting SOC components
	Slide 74: Connecting SOC components…
	Slide 75: Software
	Slide 77: Analysis
	Slide 78: Analysis…
	Slide 79: Implementation 2: Microcontroller and CCDPP
	Slide 80: Implementation 3: Microcontroller and CCDPP/Fixed-Point DCT
	Slide 81: DCT floating-point cost
	Slide 82: Fixed-point arithmetic
	Slide 83: Fixed-point arithmetic…
	Slide 84: Fixed-point arithmetic operations
	Slide 85: Fixed-point implementation of CODEC
	Slide 86: Implementation 3: Microcontroller and CCDPP/Fixed-Point DCT
	Slide 87: Implementation 4: Microcontroller and CCDPP/DCT
	Slide 88: CODEC design
	Slide 89: Implementation 4: Microcontroller and CCDPP/DCT
	Slide 90: Summary of implementations
	Slide 91: Digital Camera -- Summary
	Slide 92: Examples of Embedded Systems
	Slide 94: e-Yantra Sensing Platform

