
Schedulability in Real Time Systems

Paritosh Pandya

CS684, IIT Bombay
March 2022

Paritosh Pandya Schedulability



Real time, Embedded Systems

An assembly of electro-mechanical, optical, chemical components
with sensors and actuators, connected to onboard computer.

Program is typically orgainzed as a set of repeating tasks.

A periodic task typically has the structure:

repeat every 10 ms

{ sense input;

Compute;

Actuate output;

}

(latancy) There are real-time requirements on delays between
input and output.

Paritosh Pandya Schedulability



Example: Flight Control System

A set of periodic processes.

Interaction via shared memory.

Execute on single microcontroller by sharing CPU

Scheduling important to meet latency.

Paritosh Pandya Schedulability



Schedulability Analysis

Given set of tasks what kind of scheduling policy will allow all
tasks to meet their deadlines (latency requirements) ?

Paritosh Pandya Schedulability



Example: Mars Pathfinder (1)

NASA Mars Mission 4 July, 1997.

(Images courtsey NASA)

Paritosh Pandya Schedulability



Example: Mars Pathfinder (2)

Paritosh Pandya Schedulability



Example: Mars Rover (3)

Information Bus: A shared data structure for devices and processes
of Lander and Cruise Control.

Paritosh Pandya Schedulability



Example: Mars Pathfinder (4)

Paritosh Pandya Schedulability



Example: Mars Pathfinder (5)

Paritosh Pandya Schedulability



Mars Pathfinder Bug

NASA sent mars pathfinder Sojourn on 4 July 1997.

Stopped working after 87 sol due to software error.

Paritosh Pandya Schedulability



Mars Pathfinder Bug

NASA sent mars pathfinder Sojourn on 4 July 1997.

Stopped working after 87 sol due to software error.

Diagnosed as a rare schedulability problem called Priority
Inversion.

Paritosh Pandya Schedulability



Mars Pathfinder Bug

NASA sent mars pathfinder Sojourn on 4 July 1997.

Stopped working after 87 sol due to software error.

Diagnosed as a rare schedulability problem called Priority
Inversion.

Fixed by reloading patched code.

Paritosh Pandya Schedulability



Mars Pathfinder Bug

NASA sent mars pathfinder Sojourn on 4 July 1997.

Stopped working after 87 sol due to software error.

Diagnosed as a rare schedulability problem called Priority
Inversion.

Fixed by reloading patched code.

Schedulability Analysis

Subsequent schedulability analysis found the problem in original
design. It proved the correctness of modified design.

Paritosh Pandya Schedulability



IEEE TCRTS Test Of Time Awards 2020
Instituted by IEEE in 2020 for papers having lasting impact on the field.

Paritosh Pandya Schedulability



Framework for Schedulability

A set of repeating tasks τ1, . . . , τn

Arrival Pattern σ = (Γi ,Θi )

Γi (j) gives time of arrival of jth instance of task i .
Θi (j) gives cpu time needed to execute jth instance of task i .

Tasks are executed on Single CPU under the control of a
scheduler.

Paritosh Pandya Schedulability



Framework for Schedulability (2)

pr(τ2) > pr(τ1)

Preemptive scheduling versus Non-preemptive scheduling.

Priority Based Preemptive Scheduling Each process τi has a
unique priorty pr(τi ). Processes can be ordered by their
priority.

For a taskset τ1, . . . , τn, arrival pattern blue σ = (Γi ,Θi ) and
priority assignment pr(τi ) there is unique execution diagram.

Response time (local) RTLi (j) is the time between release and
completion of jth instance of task i .
Example: RTL1(1) = 3, RTL2(1) = 1, and RTL2(1) = 2.

Deadline Di maximum permitted response time.
Execution meets deadline Di if ∀i , j . RTLi (j) ≤ Di .

Paritosh Pandya Schedulability



Sporadic Tasks

A set of sporadic tasks τ1, . . . , τn.
τi = (Ti ,Ci ,Di ) with Di ≤ Ti .

(Period Ti ) Each task τi is repeatedly invoked with a
minimum period of Ti .
Γi (j + 1)− Γi (j) ≥ Ti for all i , j .
(Load Ci ) Each invocation needs at most Ci seconds processor
time.
Θi (j) ≤ Ci for all i , j .
(Deadline Di ) Each invocation must finish within Di seconds
of its arrival.

Worst Case Response time RTi under priority assignment pr

Let Σ be set of arrival patterns satisfying sporadic constraints.
RTi = maxσ∈Σ maxj RTLi (j)

Thus worst case response time RTi is the maximum of RTLi (j)
over all instances and all permitted arrival patterns Σ.

Priority assignment pr is feasible if RTi ≤ Di for all i
Paritosh Pandya Schedulability



Hard Real Time Systems [Liu and Layland 1973]

A set of sporadic tasks τ1, . . . , τn with τi = (Ti ,Ci ,Di )
(Period Ti ) Each task τi is repeatedly invoked at a minimum
period of Ti .
(Load Ci ) Each invocation needs atmost Ci seconds processor
time.
(Deadline Di ) Each invocation must finish within Di seconds
of its arrival.
Tasks are independant (no synchronization).
Tasks execute on a single processor. CPU is shared between
tasks.
Priority based pre-emptive scheduling:
Tasks are assigned unique priorities.
Invocation of higher priority task switches processor to it from
currently executing lower priority task.

A priorty assignment is feasible if for all possible task arrival
patterns all deadlines are met. Taskset is feasible if there exists a
feasible priority assignment.

Paritosh Pandya Schedulability



Hard Real-time System Example

Task set τ1 = (2, 1, 2) and τ2 = (5, 2, 4)

Execution with pr(τ1) > pr(τ2)

Paritosh Pandya Schedulability



Hard Real-time System Example

Task set τ1 = (2, 1, 2) and τ2 = (5, 2, 4)

Execution with pr(τ1) > pr(τ2)

Execution with pr(τ2) > pr(τ1)

Paritosh Pandya Schedulability



Analysis of Hard Real Time Systems

[Liu and Layland 1973]
For a given sporadic task set

Feasibility

Given a priority assignment pr , how to check feasibility (i.e.
deadlines are always met under all permitted task arrival patterns)?

Priority Assignment

How to assign priorities to the tasks to ensure feasibility? How to
compute pr which is feasible?

Paritosh Pandya Schedulability



Critical Instance: Planning for the worst

Given a taskset τ1, . . . , τn with τi = (Ti ,Ci ,Di ), the critical
instance is the unique arrival pattern σ = (Γi ,Θi ) where

All tasks are invoked simultaneously at time = 0. Thus,
Γi (1) = 0

All tasks always arrive exactly after period Ti . Thus,
Γi (j + 1)− Γi (j) = Ti for all i , j .

Each task invocation takes maximum permitted load Ci .
Thus, Θi (j) = Ci for all i , j .

Under a given priority assignment, the critical instance has unique
execution.

Paritosh Pandya Schedulability



Critical Instance: Planning for the worst

Given a taskset τ1, . . . , τn with τi = (Ti ,Ci ,Di ), the critical
instance is the unique arrival pattern σ = (Γi ,Θi ) where

All tasks are invoked simultaneously at time = 0. Thus,
Γi (1) = 0

All tasks always arrive exactly after period Ti . Thus,
Γi (j + 1)− Γi (j) = Ti for all i , j .

Each task invocation takes maximum permitted load Ci .
Thus, Θi (j) = Ci for all i , j .

Under a given priority assignment, the critical instance has unique
execution.

Theorem (Liu, Layland 73)

If critical instance gives feasible execution, then the priority
assignment is feasible.

Paritosh Pandya Schedulability



Naive Feasibility Test

Given sporadic task set τ1, . . . , τn with τi = (Ti ,Ci ,Di ), the
hyper-period HP = lcm(T1, . . . ,Tn).

Given priority assignment pr to check if it is feasible,

Observation: Execution of the critical instance under pr for
the interval [0 : HP) repeats without any change.

Simulate the execution of critical instance only upto HP and
compute observed worst case reponse times for each task.

If each of these RTi ≤ Di then priority assingment is feasible.

Difficulty Hyperperiod can grow exponentially with number of
tasks and hence simulation is often not practicable.

Paritosh Pandya Schedulability



Static Priority Assignment Schemes (scheduling policies)

Rate Monotonic Scheduling

Assign priorities in the order of rate (inverse of period). Shortest
period gets highest priority.

Theorem (Liu, Layland 73)

For tasksets where Ti = Di for all i , rate monotonic scheduling is
optimal. If any arbitrary priority assignment is feasible then so is
rate monotonic assignment.

Deadline Monotonic Scheduling

Assign priorities in order of inverse of deadlines. Shortest deadline
gets highest priority.

Theorem (Leung, Whitehead, 1982)

For tasksets with Di ≤ Ti forall i , Deadline monotonic scheduling is
optimal. If any arbitrary fixed priority assignment is feasible (meets
deadlines) then so is deadline monotonic priority assignment.

Paritosh Pandya Schedulability



Example: Rate and Deadline Monotonic Priority
Assignments

Task T C D

τ1 10 1 3

τ2 5 1 5

τ3 6 2 4

Rate monotonic Priorities: τ2 > τ3 > τ1.
Infeasible by naive test as it violates deadline.

Deadline monotonic priorities: τ1 > τ3 > τ2
Feasible by Naive test.

Paritosh Pandya Schedulability









Fesibility Checking

[Liu and Layland 73]

Utilization

CPU Utilization by task i is Ui = Ci/Ti

Total Untilization U = C1/T1 + C2/T2 + . . .+ Cn/Tn

Total utilization gives the fraction of time the CPU is kept busy.

Necessary condition

U ≤ 1

Necessary but not sufficient.

Sufficient Condition: For Tasksets with Di = Ti for all i .

U ≤ B(n) where B(n) = n × (21/n − 1)

B(n) has limit ln(2) as n → ∞.
Sufficent but not necessary.

Quest: Necessary and Sufficient condition? For Di ≤ Ti?Paritosh Pandya Schedulability



Utilization Bound Table

Paritosh Pandya Schedulability



Examples: Utilization based feasibility

(U > 1) Infeasible: Taskset (12, 8), (6, 3).

(U < ln(2)) Feasible: Taskset (12, 2), (6, 1).

(U = 1) Inconclusive: Taskset (12, 4), (6, 4). Consider naive
test with rate monotonic assignment.

Taskset (100, 20), (150, 40), (350, 10).

Paritosh Pandya Schedulability



Examples: Utilization based feasibility

(U > 1) Infeasible: Taskset (12, 8), (6, 3).

(U < ln(2)) Feasible: Taskset (12, 2), (6, 1).

(U = 1) Inconclusive: Taskset (12, 4), (6, 4). Consider naive
test with rate monotonic assignment.

Taskset (100, 20), (150, 40), (350, 10).
U = 20/100 + 40/150 = 0.753 > ln(2).
But, B(3) = 3 ∗ (21/3 − 1) = 0.779. Hence, U < B(3).
Feasible by rate monotonic.

Paritosh Pandya Schedulability



Exact test for feasibility: The Response Time Approach

[Joseph, Pandya 86]
For a given priority assignment, let RTi denote the worst case
response time of task τi .

Equational characterization of RTi

Let hp(i) denote the set of tasks with priority higher than i .

RTi = Ci + Σj∈hp(i) (�RTi/Tj�× Cj) (1)

Task set τ1 = (2, 1, 2) and
τ2 = (5, 2, 4)

Paritosh Pandya Schedulability



Exact test for feasibility: The Response Time Approach

[Joseph, Pandya 86]
For a given priority assignment, let RTi denote the worst case
response time of task τi .

Equational characterization of RTi

Let hp(i) denote the set of tasks with priority higher than i .

RTi = Ci + Σj∈hp(i) (�RTi/Tj�× Cj) (1)

Task set τ1 = (2, 1, 2) and
τ2 = (5, 2, 4)

RT1 = C1 + 0

Paritosh Pandya Schedulability



Exact test for feasibility: The Response Time Approach

[Joseph, Pandya 86]
For a given priority assignment, let RTi denote the worst case
response time of task τi .

Equational characterization of RTi

Let hp(i) denote the set of tasks with priority higher than i .

RTi = Ci + Σj∈hp(i) (�RTi/Tj�× Cj) (1)

Task set τ1 = (2, 1, 2) and
τ2 = (5, 2, 4)

RT2 = C2 + I1

I1 = (Count of τ1 in [0,RT2))∗C1

= (�RT2/T1�)∗C1

RT2 = 2 + (�RT2/2�)∗1

Interference due to τj in RTi is
I ij = (�RTi/Tj�)∗Cj

Paritosh Pandya Schedulability



Solving the equation iteratively

r1i = C1 + C2 + . . .+ Ci

rn+1
i = Ci + Σj∈hp(i) (�rni /Tj�× Cj)

Paritosh Pandya Schedulability



Solving the equation iteratively

r1i = C1 + C2 + . . .+ Ci

rn+1
i = Ci + Σj∈hp(i) (�rni /Tj�× Cj)

Start with r1i as above. (An under-estimate of RTi ).

Iteratively compute rn+1
i from rni .

Paritosh Pandya Schedulability



Solving the equation iteratively

r1i = C1 + C2 + . . .+ Ci

rn+1
i = Ci + Σj∈hp(i) (�rni /Tj�× Cj)

Start with r1i as above. (An under-estimate of RTi ).

Iteratively compute rn+1
i from rni .

(Convergence) Stop when rn+1
i = rni . This r

n
i gives the

worst case response time RTi for Task τi .

Paritosh Pandya Schedulability



Solving the equation iteratively

r1i = C1 + C2 + . . .+ Ci

rn+1
i = Ci + Σj∈hp(i) (�rni /Tj�× Cj)

Start with r1i as above. (An under-estimate of RTi ).

Iteratively compute rn+1
i from rni .

(Convergence) Stop when rn+1
i = rni . This r

n
i gives the

worst case response time RTi for Task τi .

If U ≤ 1 then the computation will converge.

Paritosh Pandya Schedulability



Solving the equation iteratively

r1i = C1 + C2 + . . .+ Ci

rn+1
i = Ci + Σj∈hp(i) (�rni /Tj�× Cj)

Start with r1i as above. (An under-estimate of RTi ).

Iteratively compute rn+1
i from rni .

(Convergence) Stop when rn+1
i = rni . This r

n
i gives the

worst case response time RTi for Task τi .

If U ≤ 1 then the computation will converge.

Fail if for any n, we get rni > Di . Priority assignment is
infeasible.

Paritosh Pandya Schedulability



Example: Exact feasibility Test

Taskset (10, 1, 3), (6, 2, 4), (5, 1, 5).

RT1 = C1 + 0 = 1

Paritosh Pandya Schedulability



Example: Exact feasibility Test

Taskset (10, 1, 3), (6, 2, 4), (5, 1, 5).

RT1 = C1 + 0 = 1

RT 1
2 = C1 + C2 = 1 + 2 = 3.

RT 2
2 = C2 + �RT 1

2 /T1�∗C1 = 2+�3/10�∗1 = 2+1∗1 = 3

Paritosh Pandya Schedulability



Example: Exact feasibility Test

Taskset (10, 1, 3), (6, 2, 4), (5, 1, 5).

RT1 = C1 + 0 = 1

RT 1
2 = C1 + C2 = 1 + 2 = 3.

RT 2
2 = C2 + �RT 1

2 /T1�∗C1 = 2+�3/10�∗1 = 2+1∗1 = 3

RT 1
3 = C1 + C2 + C3 = 1 + 2 + 1 = 4

RT 2
3 = C3 + (�RT 1

3 /T1� ∗ C1) + (�RT 1
3 /T2� ∗ C2)

= 1 + (�4/10� ∗ 1) + (�4/6� ∗ 2)
= 1 + (1 ∗ 1) + (1 ∗ 2) = 4

Paritosh Pandya Schedulability



Complexity

Feasibility is in NP.

Feasibility has pseudo-polynomial upper bound.

Each iteration takes constant amount of time.
Number of iterations is bounded by the value Σi Ti .

Paritosh Pandya Schedulability



Mars Pathfinder Bug

NASA sent mars pathfinder Sojourn on 4 July 1997.

Stopped working after 87 sol due to software error.

Diagnosed as a rare schedulability problem called Priority
Inversion

Fixed by reloading patched code.

Paritosh Pandya Schedulability



Example: Mars Pathfinder (4)

Information Bus: A shared data structure for devices and processes
of Lander and Cruise Control.

Paritosh Pandya Schedulability



Processes with Shared Resources

Shared resources with mutually exclusive access

Tasks block waiting for shared resource.

Paritosh Pandya Schedulability



Priority Inversion

[Lampson and Redell, 1980]

Paritosh Pandya Schedulability



Priority Inheritence Protocol (PIP)

Temporarily increase the priority of task acquiring resource to
high (ceiling) level.

The critical section gets executed at high priority without
blocking.

Revert the task to original low priority on exiting the critical
section.

Implemented in all major Kernels including POSIX threads, Java
and VxWORKS.

Paritosh Pandya Schedulability










