
Synchronous Dataflow Programming
CS684: Embedded Systems

Topic 5

Paritosh Pandya

Indian Institute of Technology, Bombay

February 9, 2023

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 1 / 18



Summary

Multi-mode controller as FSA + Dataflow Equations.

Automaton can be in one active state at each cycle.

Each state is a mode with associated set of equations. Equations of
the active state are applied.

Each state is a name space and clock domain. pre(x) refers to mode
local copy of x . Construct last(x) allows values to be shared between
modes.

Each state has outgoing until (or weak) transitions. After executing
the equations of the active state, the guards of its until transitions are
evaluated to decide the next state.

Thus, weak state transition takes effect from the next cycle.

In a continue type transition, the state change occurs without
resetting the equations of the target state.

In a then type transition, the state change occurs with resetting of
the equations of the target state.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 2 / 18



Structure of a Node with Concurrent Automata

node myautomaton () returns (y:int)

let

y = x + z;

automaton --autA

state S1 do x = 10 -> pre(x)+1;

...

end

automaton --autB

state T1 do z = 20;

...

end

tel

Equations and automata all execute in parallel in lock-step (synchronous)
manner.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 3 / 18



Concurrent Automata: Example

node myautomaton () returns (ping,pong : bool)

let

automaton -- A_ping automaton -- A_pong

state S1a state S1b

do ping = true do pong = false

until true then S2a until ping then S2b

state S2a state S2b

do ping = false do pong = true

until pong then S1a until true then S1b

end; end

tel

ST (S1a, S1b) (S2a,S2b) (S1a,S1b) (S2a,S2b) (S1a,S1b) ...

ping 1 0 1 0 1 ...

pong 0 1 0 1 0 ...

NS (S2a, S2b) (S1a,S1b) (S2a,S2b) (S1a,S1b) (S2a,S2b) ...

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 4 / 18



Automaton with until and reset transition (Revision)

node myautomaton(i : int; c: bool) returns (o: int; stup:bool)

let

automaton

state Up

do o = 60 -> i+1; stup = true;

until c then Down

state Down

do o = 150 -> -2 * i; stup = false;

until c then Up

end

tel

ST U U U U D D D D U U U D D ...

i 4 4 3 3 3 3 3 3 3 3 3 3 3 ...

c 0 0 0 1 0 0 0 1 0 0 1 0 0 ...

o 60 5 4 4 150 −6 −6 −6 60 4 4 150 −6 ...

stup 1 1 1 1 0 0 0 0 1 1 1 0 0 ...

NS U U U D D D D U U U D D D ...

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 5 / 18



Reaction Cycle of an Automaton

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 6 / 18



Unless Transitions: Motivation

Unless transitions are also called strong transitions.

They allow delegation of reacting in current cycle to another state.

A state can have one or more unless transitions.

Guard of an unless transition is evaluated before looking at the
equations (i.e. before reacting).
Hence, guard cannot use current values of equations.

If guard is true, control moves to the target state in the same cycle.

Thus, target state becomes the active state. Its equations are applied.

If the guards of all unless transitions are false, the current state
remains the active state.

After the reaction, the until transitions of the active state decides the
next state.

At most one delegation is allowed per cycle.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 7 / 18



Reaction Cycle

Start State

Delegation Apply unless transition to determine the active state of
the current cycle.

Reaction Equations of the active state are applied to compute output
from input.

Followup AFTER the reaction, apply the until transition of the active
state:
Guard of each until transition is evaluated.
Guard can refer to outputs the equations.
If guard is true the transition is taken and next state is changed to
target state.

Next State: this is the start state of the next cycle.

For both unless and until transitions, the equations are reset for then
type transition. They are not reset for a continue type transition.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 8 / 18



Unless Transitions: Example

node myautomaton(i : int; c: bool) returns (o: int; stup:bool)

let

automaton

state Up

do o = 60 -> i+1; stup = true;

unless c then Down

state Down

do o = 150 -> -2 * i; stup = false;

unless c then Up

end

tel
ST U U U U D D D U ...

AS U U U D D D U U ...

i 4 4 4 4 4 4 4 4 ...

c 0 0 0 1 0 0 1 0 ...

o 60 5 5 150 −8 −8 60 5 ...

stup 1 1 1 0 0 0 1 1 ...

NS U U U D D D U U ...
P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 9 / 18



Mixing unless and until Transitions: Example

node myautomaton(i : int; c: bool) returns (o: int; stup:bool)

let

automaton

state Up

do o = 60 -> i+1; stup = true;

unless c then Down

state Down

do o = 150 -> -2 * i; stup = true;

until c then Up

end

tel
ST ...

AS ...

i 4 4 4 4 4 4 4 4 4 4 4 ...

c 0 0 0 1 0 0 0 1 1 0 0 ...

o 60 5 5 150 60 5 5 150 150 60 5 ...

stup 1 1 1 0 1 1 1 0 0 1 1 ...

NS ...
P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 10 / 18



Example: Farm Road Traffic Light Controller

A farm road (or side road) crosses a main road. Traffic light controller
must turn on or off the lights maingreen, mainred, sidegreen, sidered. An
input carwait is true if a car is waiting on the farm road. Input second is
the timer input which becomes true for one clock cycle every one second.
Thus the count of “second” gives how much time has elapsed.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 11 / 18



Controller: Farm Road Traffic Light

node traffic(carwait,second:bool)

returns (maingreen, mainred,sidegreen,sidered:bool)

let

automaton

state Maingreen

do

until Sidegreen

state Sidegreen

do

until Maingreen

end

tel

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 12 / 18



node traffic(carwait,second:bool)

returns (maingreen, mainred,sidegreen,sidered:bool)

var timegreen:int;

let

automaton

state Maingreen

do

maingreen = true; mainred = false;

sidegreen = false; sidered = true;

until ?? then Sidegreen

state Sidegreen

do

maingreen = false; mainred = true;

sidegreen = true; sidered = false;

until ?? then Maingreen

end

tel

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 13 / 18



node traffic(carwait,second:bool)

returns (maingreen, mainred,sidegreen,sidered:bool)

var timegreen:int;

let

automaton

state Maingreen

do timegreen = 180 -> if (((pre(timegreen)) > 0) and second) then

pre(timegreen)-1 else pre(timegreen);

maingreen = true; mainred = false;

sidegreen = false; sidered = true;

until (timegreen <= 0) then Sidegreen

state Sidegreen

do

timegreen = 60 ->

if (((pre(timegreen)) > 0) and second) then pre(timegreen)-1

else pre(timegreen);

maingreen = false; mainred = true;

sidegreen = true; sidered = false;

until (timegreen <=0) then Maingreen

end

tel

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 14 / 18



Controller: Farm Road Traffic Light

node traffic(carwait,second:bool)

returns (maingreen, mainred,sidegreen,sidered:bool)

var timegreen:int;

let

automaton

state Maingreen

do timegreen = 180 -> if (((pre(timegreen)) > 0) and second) then

pre(timegreen)-1 else pre(timegreen);

maingreen = true; mainred = false;

sidegreen = false; sidered = true;

until ((timegreen <= 0) and carwait) then Sidegreen

state Sidegreen

do

timegreen = 60 ->

if (((pre(timegreen)) > 0) and second) then pre(timegreen)-1

else pre(timegreen);

maingreen = false; mainred = true;

sidegreen = true; sidered = false;

until ((timegreen <=0) and not carwait) then Maingreen

end

tel P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 15 / 18



Conclusion

Synchronous Dataflow Programming using language Heptagon:

Finite State Automata with Synchronous Data Flow Equationes.

Automata provide modes of operation.
Dataflow equations define equations for transforming input into
output.

Highly complex modes of operation can be programmed:
Hierachy, concurrency, communication with shared flows.

A heptagon program (node) compiles into a reactive kernel. Target C
and Java.

A modelling langauge.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 16 / 18



Desirable Feature

Clean Semantics

Deterministic execution: easy to certify.

Simulation, testing and verification tools.

Qualified code generator,

Efficient Code

Industrial Strength: Used widely in Nuclear reactor control, Aerospace
and railway industries.

P.K. Pandya (IITB) Synchronous Dataflow Programming February 9, 2023 17 / 18


