CS684
Embedded Systems

(Software)

Models and Tools for Embedded Systems

Kavi Arya
CSE/ lIT Bombay

© Kavi Arya 1

Problems with FSMs

All is not well with
-SMs fine for sma

magine FSM with
which is a reality

-SMs

| systems (10s of states)
100s and 10%° of states

Such large descriptions difficult to understand

state machines

-SMs are flat and no structure
nflexible to add additional functionalities
Need for structuring and combining different

Statecharts

Extension of FSMs to have these features
Due to David Harel

Retains the nice features
— Pictorial appeal
— States and transitions

Enriched with two features
— Hierarchy and Concurrency

States are of two kinds
— OR state (Hierarchy)
— AND state (concurrency)

© Kavi Arya

OR States

* An OR state can have a whole state machine inside it
« Example:

Count T

Not
counting

]
stop.end cnd) init

a

Counting

end

© Kavi Arya

OR states

* When the system is in the state Count, it is
either in counting or not_counting

» Exactly in ONE of the inner states

* Hence the term OR states
(more precisely XOR state)

« When Count is entered, it will enter
not_counting

* |nner states can be OR states (or AND states)

OR states

Both outer and inner states active simultaneously
When the outer state exits, inner states also exited
Priorities of transitions

Preemption (strong and weak)

Economy of Edges

» Every transition from outer state
corresponds to many transitions from each
of the inner states

» Hierarchical construct replaces all these
Into one single transition

* Edge labels can be complex

AND States

* An Or state contains exactly one state machine
* An And state contains two or more state machines

» Example:

Counting

S1 S2

1t2 /end

L/

§s3

tick

tick / Itl

© Kavi Arya

Example

* Counting is an And state w/ 3 state machines
» 51, S2, S3, concurrent components of state

* When in state Counting, control resides
simultaneously in all 3 state machines

» |nitially, control is in CO, BO and AO

* Execution involves, in general, simultaneous
transitions in all the state machines

Example (contd.)
» When in state C0, BO, A1, clock signal triggers
the transition to B1 and A0 in S2 and S3

» When in CO, B1, A1, clock signal input trigger the
transitions to C1, BO and AO in all S1, S2, S3

* And state captures concurrency
» Default states in each concurrent component

Economy of States

» AND-state can be flattened to single state mc

» Results in exponential number of states and
transitions

» AND state is compact & intuitive representation

Counting

What are the three components of the state?
They represent behaviour of three bits of a counter

S3 —least significant bit, S2 the middle & S1 is MSB

Compare this with flat and monolithic description of
counter state machine given earlier

Which is preferable?

The present one Is robust - can be redesigned to
accommodate additional bits

Look at the complete description of the counter

© Kavi Arya 12

Complete Machine

It2

It2 Fend

Itl 7 1t2

Not .]
counting
stop.end end init
Count
[Counting
S1

tick 7 1tl

Itl | It2

© Kavi Arya

end

Communication
Concurrent components of AND state communicate
with each other
Taking an edge requires certain events to occur
New signals are generated when an edge Is taken

These can trigger further transitions in other
components

A series of transitions can be taken as a result of one
transition triggered by environment event

Different kinds of communication primitives
More on this later

© Kavi Arya 14

Flat State Machines

» Capture the behaviour of the counter using FSMs
— Huge number of states and transitions
— Explosion of states and transitions

» Statechart description is compact
— Easy to understand
— Robust
— Can be simulated
— Code generation is possible
— Execution mechanism is more complex

© Kavi Arya 15

Exercise

» Extend the lift controller example
— Control for closing and opening the door
— Control for indicator lamp
— Avoid movement of the lift when the door is open
— Include states to indicate whether lift in service or not
— Controller for multiple lifts

» Give a Statechart description

© Kavi Arya 16

Extensions to Statecharts

» Various possibilities explored

» Adding code to transitions, to states

» Complex data types and function calls

» Combining textual programs with statecharts

» Various commercial tools exist
— Statemate and Rhapsody (ilogix)
— UML tools (Rational rose)
— Stateflow (Mathworks)
— SynchCharts (Esterel Technologies)

© Kavi Arya

Example
* Program State Machine model

/ Elevator Controller
nt req;
Unit Control 4 \ /Request Rcso]vcr\

/ Normal Mode \
up = down = 0; open= 1; :
while (1) { : req = ...

while (req == floor); :

open = O; : \
if (req > floor) { up= 1;
else {down = 1:}

while (req !'= floor);
open = 1:

o

delay (10);

e _

fire ‘ ¢ fire

B i eMode

up = 0; down= 1; open = 0;
while (floor > 1);

up = 0; down = 0; open = 1;
N\ 2

© Kavi Arya

18

Fuel Con’rroller

--
.

--

d Oxygen_Sensor_Mode 02_normal

entry: 02State = 0 - ,' Pressure _Sensor_Mode

> . ; [press > max_press | press < min_press)
02_warmup o /Sens_Failure_Counter.INC
entry: 02State = 1 [Ego > max_ego)/ . ,
. Sens_Failure_Counter.INC .+ (press_norm press_fail

entry: pressState =0 entry: pressState = 1

02_fai L
entry: 02State = 1 £ [press > min_press & press < max_press) /
4% Sens_Failure_Counter.DEC
3¢ t ! \ ;

: /A [Ego < max_ego]/
: Sens_Failure_Counter.DEC

.

i Throttle_Sensor_Mode

.
--

oo
.

speed==0 & press < zero_thresh)/
Sens_Failure_Counter.INC

speed_norm speed_fail
entry: speedState = 0 entry: speedState = 1

' Speed Sensor_Mode

[throt> max_throt | throt < min_throty
Sens_Failure_Counter.INC

throt_norm throt_fail
entry: throtState=0 entry: throtState = 1

[throt > min_throt & throt < max_throt]

[speed > 0]/
/ Sens_Failure_Counter.DEC

Sens_Failure_Counter.DEC

...

.
oo

RV
& Kavl Arya

Fuel Controller (Contd.)

Fueling_Mode

MultiFail

m\mng

ﬂow’_Emmlsions
entry: fuel_mode = LOW

[in(FL1)]

\[speecl > max_speed]

6ich_Mixture

entry: fuel_mode = RICH

Single_Failure

(in(FL1))

[in(FLO))

[e
-

[lin(MultiFail))

enter(MultiFail)

exit(MultiFail)

&[in(oz,normal)]

. .
..

© Kavi Arya

mel_Disabled

entry: fuel_mode = DISABLED

>{ Overspeed

[in(speed_norm) & ...
speed < (max_speed - hys))

[in(MultiFail))

Other Models

» Synchronous Reactive Models
— Useful for expressing control dominated application
— Rich primitives for expressing complex controls
— Esterel (Esterel Technologies)
— More on this later

© Kavi Arya 22

Design Features

» Two broad classifications
— Control-dominated designs
— Data-dominated Designs

* Control-dominated designs
— Input events arrive at irregular & unpredictable times
— Time of arrival and response more crucial than values

© Kavi Arya 23

Design Features

 Data-dominated designs

— Inputs are streams of data coming at regular intervals
(sampled data)

— Values are more crucial
— Outputs are complex mathematical functions of inputs

— numerical computations and digital signal processing
computations

© Kavi Arya 24

Data flow Models

State machines, Statecharts, Esterel are good for
control-dominated designs

Data flow models for data-dominated systems
Special case of concurrent process models

System behaviour described as an interconnection
of nodes

Each node describes transformation of data

Connection between a pair of nodes describes the
flow of data from one node to the other

Example

A B C D
Comore >
t1 t2

B

© Kavi Arya 26

Y

t1

Data Flow Models

» Graphical Languages with support for

— Simulation, debugging, analysis

— Code generation onto DSP and micro processors
* Analysis support for hw/sw partitioning

» Many commercial tools and languages
— Lustre, Signal
- SCADE
— Matlab, Scilab

Discrete Event Models

Used for HW systems

VHDL, Verilog

Models are interconnection of nodes
Each node reacts to events at their inputs

» (Generates output events which trigger other
nodes

Discrete Event Models

External events initiate a reaction

Delays in nodes modeled as delays In
event generation

Simulation
Problems with cycles
Delta cycles in VHDL

Kavi Arya

Discrete Event Models

© Kavi Arya

30

Realtime
Embedded Systems

Embedded Software

Typical structure of a simple embedded system
(Software)

loop

read inputs/sensors;
compute response,
generate actuator outputs

forever

33

Embedded Software (contd.)

* Design Decisions

— How to read inputs?

— How often to read inputs?
— Which order to read the inputs?
— How to compute responses?

— How to generate the responses?

— How often to generate?

© Kavi Arya

The Simplest Approach

Round Robin Scheme

loop
await tick;
read S1; take_action(S1);
read S2; take _action(S2);
read S3; take action(S3);
forever

Tick is a time interrupt

The Most General Scheme

» Task1 || Task2 || ... || Task8

» Tasks
— Sequential threads
— Concurrently executed
— Can be scheduled and suspended
— Wait for specific time period or events
— Communicate with each other

© Kavi Arya

38

The Most General Scheme

* Real-time OS (RTOS kernel)

— Manages the tasks

— Task communications

— Timer services

— Schedules the tasks for execution using various
— Scheduling strategies

© Kavi Arya 39

Summary

Various models reviewed

— Sequential programming models
— Hierarchical and Concurrent State Machines
— Data Flow Models, Discrete Event Models

Each model suitable for particular application

State Machines for event-oriented control systems
Sequential prog. model, data flow model for fcn computation
Real systems often require mixture of models

Modeling tools/ lang. should have combination of all the features

— Ptolemy (Berkeley) project studies modeling, simulation, and design of concurrent,
real-time, embedded systems (Java based). http://ptolemy.eecs.berkeley.edu/

— POLIS (Berkeley) framework for hw-sw Co-Design of Embedded Systems.
— LUSTRE/SCADE of Esterel Technologies (from INRIA, France)

© Kavi Arya 40

References

F. Balarin et al., Hardware — Software Co-design of Embedded Systems: The POLIS approach,
Kluwer, 1997

N. Halbwachs, Synch. Prog. Of Reactive Systems, Kluwer, 1993

D. Harel et al., STATEMATE: a working environment for the development of complex reactive
systems, IEEE Trans. Software Engineering, Vol. 16 (4), 1990.

J. Buck, et al., Ptolemy: A framework for simulating and prototyping heterogeneous systems, Int.
Journal of Software Simulation, Jan. 1990

Edward A. Lee, Overview of the Ptolemy Project, Technical Memorandum No. UCB/ERL M03/25,
University of California, Berkeley, CA, 94720, USA, July 2, 2003

Gerard Berry, The Esterel v5 Language PrimerVersion v591, Centre de Mathematiques Appliques
Ecole des Mines and INRIA 2004, June 5, 2000. Available from

Edward A. Lee and Yang Zhao, "Reinventing Computing for Real Time in Proceedings of the
Monterey Workshop 2006, LNCS 4322, pp. 1-25, 2007, F. Kordon and J. Sztipanovits (Eds.) ©
Springer-Verlag Berlin Heidelberg 2007

N. Halbwachs et al. The Synchronous Data Flow Programming Language LUSTRE. In Proc. IEEE
1991 Vol. 79, No. 9. Accessed 17 March 2014.

J. Colago, B. Pagano and M. Pouzet, "SCADE 6: A formal language for embedded critical software
development (invited paper)," 2017 International Symposium on Theoretical Aspects of Software
Engineering (TASE), Sophia Antipolis, 2017, pp. 1-11, doi: 10.1109/TASE.2017.8285623

© Kavi Arya 41

https://www.researchgate.net/publication/242374294_The_Esterel_v5_Language_Primer_Version_v5_91

