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Problems with FSMs
• All is not well with FSMs
• FSMs fine for small systems (10s of states)
• Imagine FSM with 100s and 1020 of states 

which is a reality
• Such large descriptions difficult to understand 
• FSMs are  flat and no structure
• Inflexible to add additional functionalities
• Need for structuring and combining different 

state machines
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Statecharts
• Extension of FSMs to have these features
• Due to David Harel
• Retains the nice features

– Pictorial appeal
– States and transitions

• Enriched with two features
– Hierarchy and Concurrency

• States are of two kinds
– OR state (Hierarchy)
– AND state (concurrency)
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OR States
• An OR state can have a whole state machine inside it
• Example:
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OR states
• When the system is in the state Count, it is 

either in counting or not_counting
• Exactly in ONE of the inner states
• Hence the term OR states 

(more precisely XOR state)
• When Count is entered, it will enter 

not_counting
– default state

• Inner states can be  OR states (or  AND states)
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OR states
• Both outer and inner states active simultaneously
• When the outer state exits, inner states also exited
• Priorities of transitions
• Preemption (strong and weak)
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Economy of Edges

• Every transition from outer state 
corresponds to many transitions from each 
of the inner states

• Hierarchical construct replaces all these 
into one single transition

• Edge labels can be complex
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AND States
• An Or state contains exactly one state machine
• An And state contains two or more state machines 
• Example:
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Example
• Counting is an And state w/ 3 state machines
• S1, S2, S3, concurrent components of state
• When in state Counting, control resides 

simultaneously in all 3 state machines
• Initially, control is in C0, B0 and A0
• Execution involves, in general,  simultaneous 

transitions in all the state machines 
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Example (contd.)
• When in state C0, B0, A1, clock signal triggers 

the transition to B1 and A0 in S2 and S3
• When in C0, B1, A1, clock signal input trigger the 

transitions to C1, B0 and A0 in all S1, S2, S3
• And state captures concurrency
• Default states in each concurrent component
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Economy of States
• AND-state can be flattened to single state mc
• Results in exponential number of states and 

transitions
• AND state is compact & intuitive representation
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Counting
• What are the three components of the state?
• They represent behaviour of three bits of a counter
• S3 –least significant bit, S2 the middle & S1 is MSB
• Compare this with flat and monolithic description of 

counter state machine given earlier
• Which is preferable?
• The present one is robust - can be redesigned to 

accommodate additional bits
• Look at the complete description of the counter 
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Complete Machine
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Communication
• Concurrent components of AND state communicate 

with each other
• Taking an edge requires certain events to occur
• New signals are generated when an edge is taken
• These can trigger further transitions in other 

components
• A series of transitions can be taken as a result of one 

transition triggered by environment event
• Different kinds of communication primitives
• More on this later



© Kavi Arya 15

Flat State Machines
• Capture the behaviour of the counter using FSMs

– Huge number of states and transitions
– Explosion of states and transitions

• Statechart description is compact 
– Easy to understand
– Robust
– Can be simulated
– Code generation is possible
– Execution mechanism is more complex
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Exercise
• Extend the lift controller example

– Control for closing and opening the door
– Control for indicator lamp
– Avoid movement of the lift when the door is open
– Include states to indicate whether lift in service or not
– Controller for multiple lifts

• Give a Statechart description
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Extensions to Statecharts
• Various possibilities explored 
• Adding code to transitions, to states 
• Complex data types and function calls
• Combining textual programs with statecharts
• Various commercial tools exist

– Statemate and Rhapsody (ilogix)
– UML tools (Rational rose) 
– Stateflow (Mathworks) 
– SynchCharts (Esterel Technologies)
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Example
• Program State Machine model
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Fuel Controller 
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Fuel Controller (Contd.)
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Other Models

• Synchronous Reactive Models
– Useful for expressing control dominated  application 
– Rich primitives for expressing complex controls 
– Esterel (Esterel Technologies) 
– More on this later 
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Design Features
• Two broad classifications

– Control-dominated designs
– Data-dominated Designs

• Control-dominated designs
– Input events arrive at irregular & unpredictable times
– Time of arrival and response more crucial than values
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Design Features
• Data-dominated designs

– Inputs are streams of data coming at regular intervals 
(sampled data)

– Values are more crucial
– Outputs are complex mathematical functions of inputs
– numerical computations and digital signal processing 

computations
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• State machines, Statecharts, Esterel are good for 
control-dominated designs

• Data flow models for data-dominated systems
• Special case of concurrent process models
• System behaviour described as an interconnection 

of nodes
• Each node describes transformation of data
• Connection between a pair of nodes describes the 

flow of data from one node to the other

Data flow Models
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Example

+ -

*

modulate convolve

Transform

A B AC D B C D

t1 t2 t1 t2

B
B



© Kavi Arya 27

Data Flow Models

• Graphical Languages with support for 
– Simulation, debugging, analysis
– Code generation onto DSP and micro processors

• Analysis support for hw/sw partitioning
• Many commercial tools and languages

– Lustre, Signal 
– SCADE
– Matlab, Scilab
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Discrete Event Models

• Used for HW systems
• VHDL, Verilog
• Models are interconnection of nodes
• Each node reacts to events at their inputs
• Generates output events which trigger other 

nodes
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Discrete Event Models

• External events initiate a reaction
• Delays in nodes  modeled as delays in 

event generation
• Simulation
• Problems with cycles
• Delta cycles in VHDL



© Kavi Arya 30

A B

C

D

Discrete Event Models

D
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Realtime
Embedded Systems 
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Embedded Software
Typical structure of a simple embedded system
(Software)

loop

read inputs/sensors;
compute response;
generate actuator outputs

forever
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Embedded Software (contd.)
• Design Decisions

– How to read inputs?

– How often to read inputs?

– Which order to read the inputs?

– How to compute responses? 

– How to generate the responses?

– How often to generate?
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The Simplest Approach

Round Robin Scheme

loop
await tick;
read S1; take_action(S1);
read S2; take_action(S2);
read S3; take_action(S3);

forever
Tick is a time interrupt
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The Most General Scheme

• Task1 || Task2 || … || Task8
• Tasks

– Sequential threads
– Concurrently executed
– Can be scheduled and suspended
– Wait for specific time period or events
– Communicate with each other
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The Most General Scheme
• Real-time OS (RTOS kernel)

– Manages the tasks
– Task communications
– Timer services
– Schedules the tasks for execution using various
– Scheduling strategies
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Summary 
• Various models reviewed 

– Sequential programming models 
– Hierarchical and Concurrent State Machines
– Data Flow Models, Discrete Event Models 

• Each model suitable for particular application
• State Machines for event-oriented control systems 
• Sequential prog. model, data  flow model for fcn  computation 
• Real systems often require mixture of models
• Modeling tools/ lang. should have combination of all the features

– Ptolemy (Berkeley) project studies modeling, simulation, and design of concurrent, 
real-time, embedded systems (Java based). http://ptolemy.eecs.berkeley.edu/

– POLIS (Berkeley) framework for hw-sw Co-Design of Embedded Systems. 
– LUSTRE/SCADE of Esterel Technologies (from INRIA, France)
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