
© Kavi Arya 1

CS684
Embedded Systems

(Software)

Kavi Arya
CSE/ IIT Bombay

Models and Tools for Embedded Systems

© Kavi Arya 2

Problems with FSMs
• All is not well with FSMs
• FSMs fine for small systems (10s of states)
• Imagine FSM with 100s and 1020 of states

which is a reality
• Such large descriptions difficult to understand
• FSMs are flat and no structure
• Inflexible to add additional functionalities
• Need for structuring and combining different

state machines

© Kavi Arya 3

Statecharts
• Extension of FSMs to have these features
• Due to David Harel
• Retains the nice features

– Pictorial appeal
– States and transitions

• Enriched with two features
– Hierarchy and Concurrency

• States are of two kinds
– OR state (Hierarchy)
– AND state (concurrency)

© Kavi Arya 4

OR States
• An OR state can have a whole state machine inside it
• Example:

© Kavi Arya 5

OR states
• When the system is in the state Count, it is

either in counting or not_counting
• Exactly in ONE of the inner states
• Hence the term OR states

(more precisely XOR state)
• When Count is entered, it will enter

not_counting
– default state

• Inner states can be OR states (or AND states)

© Kavi Arya 6

OR states
• Both outer and inner states active simultaneously
• When the outer state exits, inner states also exited
• Priorities of transitions
• Preemption (strong and weak)

© Kavi Arya 7

Economy of Edges

• Every transition from outer state
corresponds to many transitions from each
of the inner states

• Hierarchical construct replaces all these
into one single transition

• Edge labels can be complex

© Kavi Arya 8

AND States
• An Or state contains exactly one state machine
• An And state contains two or more state machines
• Example:

© Kavi Arya 9

Example
• Counting is an And state w/ 3 state machines
• S1, S2, S3, concurrent components of state
• When in state Counting, control resides

simultaneously in all 3 state machines
• Initially, control is in C0, B0 and A0
• Execution involves, in general, simultaneous

transitions in all the state machines

© Kavi Arya 10

Example (contd.)
• When in state C0, B0, A1, clock signal triggers

the transition to B1 and A0 in S2 and S3
• When in C0, B1, A1, clock signal input trigger the

transitions to C1, B0 and A0 in all S1, S2, S3
• And state captures concurrency
• Default states in each concurrent component

© Kavi Arya 11

Economy of States
• AND-state can be flattened to single state mc
• Results in exponential number of states and

transitions
• AND state is compact & intuitive representation

© Kavi Arya 12

Counting
• What are the three components of the state?
• They represent behaviour of three bits of a counter
• S3 –least significant bit, S2 the middle & S1 is MSB
• Compare this with flat and monolithic description of

counter state machine given earlier
• Which is preferable?
• The present one is robust - can be redesigned to

accommodate additional bits
• Look at the complete description of the counter

© Kavi Arya 13

Complete Machine

© Kavi Arya 14

Communication
• Concurrent components of AND state communicate

with each other
• Taking an edge requires certain events to occur
• New signals are generated when an edge is taken
• These can trigger further transitions in other

components
• A series of transitions can be taken as a result of one

transition triggered by environment event
• Different kinds of communication primitives
• More on this later

© Kavi Arya 15

Flat State Machines
• Capture the behaviour of the counter using FSMs

– Huge number of states and transitions
– Explosion of states and transitions

• Statechart description is compact
– Easy to understand
– Robust
– Can be simulated
– Code generation is possible
– Execution mechanism is more complex

© Kavi Arya 16

Exercise
• Extend the lift controller example

– Control for closing and opening the door
– Control for indicator lamp
– Avoid movement of the lift when the door is open
– Include states to indicate whether lift in service or not
– Controller for multiple lifts

• Give a Statechart description

© Kavi Arya 17

Extensions to Statecharts
• Various possibilities explored
• Adding code to transitions, to states
• Complex data types and function calls
• Combining textual programs with statecharts
• Various commercial tools exist

– Statemate and Rhapsody (ilogix)
– UML tools (Rational rose)
– Stateflow (Mathworks)
– SynchCharts (Esterel Technologies)

© Kavi Arya 18

Example
• Program State Machine model

© Kavi Arya 19

Fuel Controller

© Kavi Arya 20

Fuel Controller (Contd.)

© Kavi Arya 22

Other Models

• Synchronous Reactive Models
– Useful for expressing control dominated application
– Rich primitives for expressing complex controls
– Esterel (Esterel Technologies)
– More on this later

© Kavi Arya 23

Design Features
• Two broad classifications

– Control-dominated designs
– Data-dominated Designs

• Control-dominated designs
– Input events arrive at irregular & unpredictable times
– Time of arrival and response more crucial than values

© Kavi Arya 24

Design Features
• Data-dominated designs

– Inputs are streams of data coming at regular intervals
(sampled data)

– Values are more crucial
– Outputs are complex mathematical functions of inputs
– numerical computations and digital signal processing

computations

© Kavi Arya 25

• State machines, Statecharts, Esterel are good for
control-dominated designs

• Data flow models for data-dominated systems
• Special case of concurrent process models
• System behaviour described as an interconnection

of nodes
• Each node describes transformation of data
• Connection between a pair of nodes describes the

flow of data from one node to the other

Data flow Models

© Kavi Arya 26

Example

+ -

*

modulate convolve

Transform

A B AC D B C D

t1 t2 t1 t2

B
B

© Kavi Arya 27

Data Flow Models

• Graphical Languages with support for
– Simulation, debugging, analysis
– Code generation onto DSP and micro processors

• Analysis support for hw/sw partitioning
• Many commercial tools and languages

– Lustre, Signal
– SCADE
– Matlab, Scilab

© Kavi Arya 28

Discrete Event Models

• Used for HW systems
• VHDL, Verilog
• Models are interconnection of nodes
• Each node reacts to events at their inputs
• Generates output events which trigger other

nodes

© Kavi Arya 29

Discrete Event Models

• External events initiate a reaction
• Delays in nodes modeled as delays in

event generation
• Simulation
• Problems with cycles
• Delta cycles in VHDL

© Kavi Arya 30

A B

C

D

Discrete Event Models

D

© Kavi Arya 32

Realtime
Embedded Systems

© Kavi Arya 33

Embedded Software
Typical structure of a simple embedded system
(Software)

loop

read inputs/sensors;
compute response;
generate actuator outputs

forever

© Kavi Arya 34

Embedded Software (contd.)
• Design Decisions

– How to read inputs?

– How often to read inputs?

– Which order to read the inputs?

– How to compute responses?

– How to generate the responses?

– How often to generate?

© Kavi Arya 35

The Simplest Approach

Round Robin Scheme

loop
await tick;
read S1; take_action(S1);
read S2; take_action(S2);
read S3; take_action(S3);

forever
Tick is a time interrupt

© Kavi Arya 38

The Most General Scheme

• Task1 || Task2 || … || Task8
• Tasks

– Sequential threads
– Concurrently executed
– Can be scheduled and suspended
– Wait for specific time period or events
– Communicate with each other

© Kavi Arya 39

The Most General Scheme
• Real-time OS (RTOS kernel)

– Manages the tasks
– Task communications
– Timer services
– Schedules the tasks for execution using various
– Scheduling strategies

© Kavi Arya 40

Summary
• Various models reviewed

– Sequential programming models
– Hierarchical and Concurrent State Machines
– Data Flow Models, Discrete Event Models

• Each model suitable for particular application
• State Machines for event-oriented control systems
• Sequential prog. model, data flow model for fcn computation
• Real systems often require mixture of models
• Modeling tools/ lang. should have combination of all the features

– Ptolemy (Berkeley) project studies modeling, simulation, and design of concurrent,
real-time, embedded systems (Java based). http://ptolemy.eecs.berkeley.edu/

– POLIS (Berkeley) framework for hw-sw Co-Design of Embedded Systems.
– LUSTRE/SCADE of Esterel Technologies (from INRIA, France)

© Kavi Arya 41

References
• F. Balarin et al., Hardware – Software Co-design of Embedded Systems: The POLIS approach,

Kluwer, 1997
• N. Halbwachs, Synch. Prog. Of Reactive Systems, Kluwer, 1993
• D. Harel et al., STATEMATE: a working environment for the development of complex reactive

systems, IEEE Trans. Software Engineering, Vol. 16 (4), 1990.
• J. Buck, et al., Ptolemy: A framework for simulating and prototyping heterogeneous systems, Int.

Journal of Software Simulation, Jan. 1990
• Edward A. Lee, Overview of the Ptolemy Project, Technical Memorandum No. UCB/ERL M03/25,

University of California, Berkeley, CA, 94720, USA, July 2, 2003
• Gerard Berry, The Esterel v5 Language PrimerVersion v591, Centre de Mathematiques Appliques

Ecole des Mines and INRIA 2004, June 5, 2000. Available from
https://www.researchgate.net/publication/242374294_The_Esterel_v5_Language_Primer_Version_v5_91

• Edward A. Lee and Yang Zhao, "Reinventing Computing for Real Time in Proceedings of the
Monterey Workshop 2006, LNCS 4322, pp. 1-25, 2007, F. Kordon and J. Sztipanovits (Eds.) ©
Springer-Verlag Berlin Heidelberg 2007

• N. Halbwachs et al. The Synchronous Data Flow Programming Language LUSTRE. In Proc. IEEE
1991 Vol. 79, No. 9. Accessed 17 March 2014.

• J. Colaço, B. Pagano and M. Pouzet, "SCADE 6: A formal language for embedded critical software
development (invited paper)," 2017 International Symposium on Theoretical Aspects of Software
Engineering (TASE), Sophia Antipolis, 2017, pp. 1-11, doi: 10.1109/TASE.2017.8285623

https://www.researchgate.net/publication/242374294_The_Esterel_v5_Language_Primer_Version_v5_91

