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• From computers to embedded & networked SoCs … IoT
• Complete change in device interaction
• Growing number of critical applications

Beware of the computer!



Common Design Metrics
• NRE (Non-recurring engineering) cost
• Unit cost
• Size (bytes, gates)
• Performance (execution time)
• Power (more power=> more heat & less battery time)
• Flexibility (ability to change functionality)
• Time to prototype
• Time to market
• Maintainability
• Correctness
• Safety (probability that system won’t cause harm)



Apple “A” series SoC 
• Apple A4 (2010) 

– for iPad ARM based SoC @1GHz w/integ. GPU ($1Bn to devlp)
• Apple A5 (2012)

– Based on dual-core ARM Cortex-A9 MPCore CPU
– $4B development facility by Samsung in Texas
– Clocked at 1 GHz (auto adj. frequency to save battery)
– ISP for face detection, wh.balance & automatic image stabilization
– ”EarSmart" unit from Audience for noise canceling
– CPU portion 2x as powerful as the original iPad
– GPU up to 7x as powerful A4
– Cost 75% more than predecessor

• Apple A6x (2013)
– 1.4 GHz Apple-designed ARMv7 based dual-core CPU (Swift)
– Integrated quad-core PowerVR SGX 554MP4 GPU @300 MHz 
– 2x computing power + graphics perf. of previous Apple A5X
– 32 nm process => chip is 123 mm2 large[6] (26% larger than A6).

http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/Multi-core_processor
http://en.wikipedia.org/wiki/PowerVR
http://en.wikipedia.org/wiki/Apple_A5X
http://en.wikipedia.org/wiki/Apple_A6X


Year Model Specs
Produ
ct Spd Gfx Size Tech.

2012 A6
1.3 GHz ARMv7 based 
dual-core CPU (Swift) iPhone5 2x 2x 22% smaller 32nM

2013 A7

1.3–1.4GHz 64-bit 
ARMv8-A dual-core CPU 
(Cyclone) integrated 
PowerVR G6430 GPU, 
31x64bit GP regs, 
32x128bit FP regs

iPhone
5S, iPad
Mini2 & 

3 2x 2x

1B 
transistors 
in 102sq.mm 28nM

2014 A8

1.4GHz 64-bit ARMv8-A 
dual-core CPU & 
integrated PowerVR
GX6450 GPU

iPhone6 
& 6+ 25% 50%

13% less in 
size, 2B 
transistors 
89sq.mm 20nM

2015 A9
64-bit ARM based system 
on a chip (SoC)

iPhone
6S & 
6S+

70% 
more

90% 
more 14nM

(Apple) Processor Trends



Year Model Specs Product Spd Gfx Size Tech.

2017 A11

64-bit ARMv8-A 6-core 
CPU (Bionic) 2 high 
perf and 4 high 
efficiency iPhone 8

25% 
faster

70% 
faster

4.3B 
transistors 10nM

2018 A12
64-bit ARM 2+4 core 
CPU (Bionic)

iPhone XS 
& XR

35% 
faster

95% 
faster 
multi 
core 

6.9B 
transistors 7nM

2019 A13

64-bit ARM 6 core with 
2 high perf cores 
running at 2.65GHz 
(Lightening) with ML 
accelerators – AMX 
blocks; & 4 energy 
efficient cores 
(Thunder) iPhone 11

20% 
faster 
with 
30% 
less 
pwr

20% 
faster 
with 
40% 
lower 
pwr

8.5B 
transistors 7nM

2020 A14

Apple A14 Bionic 
(hexa-core 64-bit 
ARM64 "mobile SoC", 
SIMD, caches) iPhone 12

40% 
faster

30% 
faster

11.8B
transistors 5nM

2022 
A16

Apple A16 Bionic
6-core 64-bit
ARMv8.6A SoC
6 core Neural Engine iPhone 14

40%
faster

50%
faster

16.0B
transistors 4nM

(Apple) Processor Trends



Challenges

• Tolerance for defects
• Development Cycles
• Resource availability
• Ability to manage reqs
• Ability to ensure long 

term maintenance

…Decreasing Increasing…

• Safety critical requirements in
• Aerospace & defence, Energy

Transportation, Industrial, Medical
• Requirement changes, life span
• Application complexity
• Cost of code testing, validation & 

verification & certification
• Need for systems & software 

design reusability

• Packaging & ergonomics are key
• Mechatronics 
• Mass deployment – less scope 

for error

Mission & Safety-Critical Pressures



Current Technology
Extrapolation of traditional software techniques

• Programs written in conventional languages 
C subsets, MISRA C for automobile
Java for telephone / smartcards

• Glued together by OS services
A wide variety of embedded OS (VxWorks, OSEK)

• With some reuse and standardisation effort

• Classical software models largely inadequate 
•Too powerful, hard to verify
•often subsets of rich languages=>doesn’t make them simpler  



Why Is Embedded Software Not Just
Software On Small Computers?

• Embedded = Dedicated
• Interaction with physical processes

– Sensors, actuators, processes
• Critical properties are not all functional

– Real-time, fault recovery, power, security, robustness
• Heterogeneity

– Hardware/software tradeoffs, mixed architectures
• Concurrency

– Interaction with multiple processes
• Reactivity

– Operating at the speed of the environment

 These features look more like hardware!



Current Bottleneck
• Intrinsic application complexity grows rapidly

Analog / digital interface: more objects to control
Embedded algorithmics: signal, display, alarm, power...
Richer hardware architecture: µP, DSP, ASIP, ASIC, FPGA
 

• Performance adds complexity
Footprint / power minimization interferes with logical design
Technology independence is still difficult

=> Verification bottleneck
Applications hard to verify off-site
Hardware / software interaction difficult



Software Engineering
(or, how do we build reliable systems?)



Things Have to Change!

• Pressure on productivity of design engineers  working on 
complex systems. 

• Time has come to design hardware using software 
engineering - rather than hw engg - methodologies. 

• Complexity of system is the basic problem, and Moore’s 
Law doubles complexity every 18 months. 

• Advances in software engineering help produce  
complex systems with more easily available design 
skills, making large profits

• We expect new designers, with/without hardware design 
skills, will design hardware in future



Designer Productivity
• “The Mythical Man Month” by Frederick Brooks ’75
• More designers on team => lower productivity because 

of increasing communication costs between groups
• Consider 1M transistor project:

- Say, a designer has productivity of 5000 transistor/mth
- Each extra designer => decrease of 100 transistor/mth

productivity in group due to comm. costs
– 1 designer 1M/5000 => 200mth
– 10 designer 1M/(10*4100) => 24.3mth
– 25 designer 1M/(25*2600) => 15.3mth
– 27 designer 1M/(27*2400) => 15.4mth

• Need new design technology to shrink design gap

Source: Embedded System 
Design: Frank Vahid/ Tony Vargis 
(John Wiley & Sons, Inc.2002)



Design Productivity Gap
• Designer productivity grown over the last decade
• Rate of improvement has not kept pace with the chip-

capacity growth
• 1981: leading edge chip:

– 100 designers * 100 trans/mth => 10k trans complexity

• 2010: leading edge Intel chip using 45nM technology:
– > 1B transistor complexity

• 2015: Leading edge Apple A9 using 14nM technology:
– > 2B transistor complexity

• 2020: Apple A14 chip using 5nM technology:
– > 11.8B transistor complexity

• 2023: Apple A16 Bionic chip (iPhone 14) using 3nM tech:
– > 16-20B transistor complexity

• Designers at avg. of $10k pm
=> cost of building leading edge chips has gone from 
$1M (‘81)-> $300M (2002)-> $1B (2010)-> $5B (2020)-> $10B+ (2023)

• Need paradigm shift to cope with complexities Source: Embedded System 
Design: Frank Vahid/ Tony Vargis 
(John Wiley & Sons, Inc.2006)
And others.



Chip Design Cost



Time to Market Design Metric

• Simplified revenue model
– Product life = 2W, peak at W
– Time of market entry defines a triangle, 

representing market penetration
– Triangle area equals revenue

• Loss 
– The difference between the on-time 

and delayed triangle areas
• Avg. time to market today = 8  mth
• 1 day delay may amount to $Ms

– see Sony Playstation vs XBox

On-time      Delayed
entry           entry

Peak revenue

Peak revenue from 
delayed entry

Market rise Market fall
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Source: Embedded System Design: Frank Vahid/ Tony Vargis (John Wiley & Sons, Inc.2002)



Losses due to delayed market entry

• Area = 1/2 * base * height
– On-time = 1/2 * 2W * W
– Delayed = 1/2 * (W-D+W)*(W-D)

• Percentage revenue loss 
= (D(3W-D)/2W2)*100%

• Try some examples

On-time      Delayed
entry           entry

Peak revenue

Peak revenue from 
delayed entry

Market rise Market fall
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On-time
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ev
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s (
$)

– Lifetime 2W=52 wks, delay D=4 wks
– (4*(3*26 –4)/2*26^2) = 22%
– Lifetime 2W=52 wks, delay D=10 wks
– (10*(3*26 –10)/2*26^2) = 50%
– Delays are costly!

Source: Embedded System Design: Frank Vahid/ Tony Vargis (John Wiley & Sons, Inc.2006)



NRE and unit cost metrics

• But, must also consider time-to-market

• Compare technologies by costs -- best depends on 
quantity
– Technology A:  NRE=$2,000,   unit=$100
– Technology B:  NRE=$30,000,  unit=$30
– Technology C:  NRE=$100,000, unit=$2

Source: Embedded System Design: Frank Vahid/ Tony Vargis (John Wiley & Sons, Inc.2002)



Trends (Moore’s Law)
• IC transistor capacity doubles every 18 mths

– 1981: leading edge chip had 10k transistors
– 2002: leading edge chip has 150M transistors
– 2010: Leading edge Intel processor has 0.5B trans in 107sq.mm
– 2014: Leading edge Intel processor has 2.0B trans in 89sq.mm
– 2019: Leading edge Intel processor has 8.5B trans in 83sq.mm
– 2022: Apple A16 processor has 16B transistors

• Why? 
– Reducing transistor size, increasing chip size, clever circuits
– Changing due to paradigm shifts: sys design tools, nanotech, …



Trends (Designer Productivity)

• Designer productivity improved due  to better tools:
• Compilation/Synthesis tools
• Libraries/IP
• Test/verification tools
• Standards 
• Languages and frameworks (Handel-C, Lava, Esterel, …)
• 1981: designer produced 100 transistors per month
• 2002: designer produces 5000 transistors per month
• 2022: designer produces ???



Software Engineering… 
Why we need it?



• Therac 25 : lethal irradiations
• Dharan's Patriot 
• Ariane V
• Mars Explorer, Mars Polar Lander
• High-end automobile problems
• Pentium, SMP CPU networks
• Telephone and camera bugs

Bugs grow faster than Moore's law!

Enemy number 1 : the bug



Other Important Issues
• Hardware / software partitioning 

Hardware / software source code independence
Link between programming and performance analysis

• Operating Systems / scheduling
Well-studied field: rate-monotonic, earliest deadline first, etc.
Newer computation models need less explicit scheduling

• Fault tolerance
Software redundancy, voting algorithms, etc.
CRCs, TT networks



How to avoid or control bugs?
• Traditional : better verification by fancier simulation

• Next step : better design using specific techniques
Better and more reusable specifications
Simpler computation models, formalisms, semantics
Reduce architect / designer and customer / provider distance 
Reduce hardware / software distance 

• Requires better tooling
Higher-level models and synthesis
Formal property verification / program equivalence
Certified libraries



Anatomy of Embedded Applications
• CC : continuous control, signal processing

Differential equation solving, filters
Specs and simulation in Matlab / Scilab, manual or automatic code

• FSM : finite state machines, state transition systems
Discrete control, protocols, networking, drivers, security, etc.
Flat or hierarchical state machines, manual or automatic code

• Calc : calculation intensive
Navigation, security, etc. 
C, manual + libraries

• Web : web-like navigation, audio / video streaming
Consumer electronics, infotainment systems
Data-flow networks, embedded Java



BMW 745i : Prelude To  Complexity 

Another Life Cycle 
Example : The 
Software Error



External view

• Rough running engine, possibly stall
• Severity: 6 incidents in 5,470 cars with 2 rear endings

– “alleged injury” of BMW passengers
– Fault of drunk or inattentive following drivers

“Engine malfunction,
drive with moderation”

The problem: software error, a desynchronization 
of the valvetronic motors



BMW Cost
• To repair: Reprogram ECU
• Recalls not uncommon in industry

– BMW 5,470 cars @ $68,500 = Rev $372 mil
• Compare Cost: Recall BMW X5

– 164,000 units @ $66,800 = Rev $10 bil.
– ~$5 Million 
– ~$30 per SUV



Bosch EMU For Four Wheeler ( Multi Cylinder)

Source: Bosch Brochure : Ref 6



Design Issues
(How do we build these systems?)



Functional Design & Mapping

HW1 HW2 HW3 HW4
Hardware Interface

RTOS/Drivers

Th
re
adArchitectural

Design

F1
F2

F3
F4

F5
Functional
Design

(F3) (F4)

(F5)

(F2)

Source:
Ian Phillips, ARM
VSIA 2001



Synchronous languages
• Started in the 80's

Esterel : Ecole des Mines / INRIA, SyncCharts : U. Nice
Lustre : IMAG, Signal : INRIA Rennes
Lava : Chalmers, Xilinx

• Started in the mid-90's
•Handel-C: University of Oxford, Celoxica Inc.

• Industrial use in the 90's
Lustre / SCADE : nuclear plants (Schneider), avionics (Airbus)
Esterel : avionics (Dassault), telecom

 => Full development in the 2000's
avionics: Airbus, Dassault, Elbit, Eurocopter, SNECMA,  Thales,... 
automotive: AUDI, GM, PSA,...
hardware pilot projects / experiments: TI, STM, Xilinx, Intel, Thales 



• Design of Solutions
• Investigation
• Modern Tool Usage
• Individual & Team Work
• Communication

KNOWLEDGE OR SKILLS REQUIRED

How do we get there?



Conclusion
• We have simultaneous optimisations of competing 

design metrics: speed, size, power, complexity, etc.
• Software engineering issues apply

– Non-recurring engineering costs are critical
– Design-productivity / time-to-market is paramount

• Traditional technologies unequipped to build 
complex embedded systems
– Need unified view of hardware/ software co-design.

• Design focus at higher levels of abstraction => 
Abstract specs refined into programs 

then into gates and logic


