
Embedded Systems
(Software)

Prof. Kavi Arya

Embedded System
Diversity

• From computers to embedded & networked SoCs … IoT
• Complete change in device interaction
• Growing number of critical applications

Beware of the computer!

Common Design Metrics
• NRE (Non-recurring engineering) cost
• Unit cost
• Size (bytes, gates)
• Performance (execution time)
• Power (more power=> more heat & less battery time)
• Flexibility (ability to change functionality)
• Time to prototype
• Time to market
• Maintainability
• Correctness
• Safety (probability that system won’t cause harm)

Apple “A” series SoC
• Apple A4 (2010)

– for iPad ARM based SoC @1GHz w/integ. GPU ($1Bn to devlp)
• Apple A5 (2012)

– Based on dual-core ARM Cortex-A9 MPCore CPU
– $4B development facility by Samsung in Texas
– Clocked at 1 GHz (auto adj. frequency to save battery)
– ISP for face detection, wh.balance & automatic image stabilization
– ”EarSmart" unit from Audience for noise canceling
– CPU portion 2x as powerful as the original iPad
– GPU up to 7x as powerful A4
– Cost 75% more than predecessor

• Apple A6x (2013)
– 1.4 GHz Apple-designed ARMv7 based dual-core CPU (Swift)
– Integrated quad-core PowerVR SGX 554MP4 GPU @300 MHz
– 2x computing power + graphics perf. of previous Apple A5X
– 32 nm process => chip is 123 mm2 large[6] (26% larger than A6).

http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/Multi-core_processor
http://en.wikipedia.org/wiki/PowerVR
http://en.wikipedia.org/wiki/Apple_A5X
http://en.wikipedia.org/wiki/Apple_A6X

Year Model Specs
Produ
ct Spd Gfx Size Tech.

2012 A6
1.3 GHz ARMv7 based
dual-core CPU (Swift) iPhone5 2x 2x 22% smaller 32nM

2013 A7

1.3–1.4GHz 64-bit
ARMv8-A dual-core CPU
(Cyclone) integrated
PowerVR G6430 GPU,
31x64bit GP regs,
32x128bit FP regs

iPhone
5S, iPad
Mini2 &

3 2x 2x

1B
transistors
in 102sq.mm 28nM

2014 A8

1.4GHz 64-bit ARMv8-A
dual-core CPU &
integrated PowerVR
GX6450 GPU

iPhone6
& 6+ 25% 50%

13% less in
size, 2B
transistors
89sq.mm 20nM

2015 A9
64-bit ARM based system
on a chip (SoC)

iPhone
6S &
6S+

70%
more

90%
more 14nM

(Apple) Processor Trends

Year Model Specs Product Spd Gfx Size Tech.

2017 A11

64-bit ARMv8-A 6-core
CPU (Bionic) 2 high
perf and 4 high
efficiency iPhone 8

25%
faster

70%
faster

4.3B
transistors 10nM

2018 A12
64-bit ARM 2+4 core
CPU (Bionic)

iPhone XS
& XR

35%
faster

95%
faster
multi
core

6.9B
transistors 7nM

2019 A13

64-bit ARM 6 core with
2 high perf cores
running at 2.65GHz
(Lightening) with ML
accelerators – AMX
blocks; & 4 energy
efficient cores
(Thunder) iPhone 11

20%
faster
with
30%
less
pwr

20%
faster
with
40%
lower
pwr

8.5B
transistors 7nM

2020 A14

Apple A14 Bionic
(hexa-core 64-bit
ARM64 "mobile SoC",
SIMD, caches) iPhone 12

40%
faster

30%
faster

11.8B
transistors 5nM

2022
A16

Apple A16 Bionic
6-core 64-bit
ARMv8.6A SoC
6 core Neural Engine iPhone 14

40%
faster

50%
faster

16.0B
transistors 4nM

(Apple) Processor Trends

Challenges

• Tolerance for defects
• Development Cycles
• Resource availability
• Ability to manage reqs
• Ability to ensure long

term maintenance

…Decreasing Increasing…

• Safety critical requirements in
• Aerospace & defence, Energy

Transportation, Industrial, Medical
• Requirement changes, life span
• Application complexity
• Cost of code testing, validation &

verification & certification
• Need for systems & software

design reusability

• Packaging & ergonomics are key
• Mechatronics
• Mass deployment – less scope

for error

Mission & Safety-Critical Pressures

Current Technology
Extrapolation of traditional software techniques

• Programs written in conventional languages
C subsets, MISRA C for automobile
Java for telephone / smartcards

• Glued together by OS services
A wide variety of embedded OS (VxWorks, OSEK)

• With some reuse and standardisation effort

• Classical software models largely inadequate
•Too powerful, hard to verify
•often subsets of rich languages=>doesn’t make them simpler

Why Is Embedded Software Not Just
Software On Small Computers?

• Embedded = Dedicated
• Interaction with physical processes

– Sensors, actuators, processes
• Critical properties are not all functional

– Real-time, fault recovery, power, security, robustness
• Heterogeneity

– Hardware/software tradeoffs, mixed architectures
• Concurrency

– Interaction with multiple processes
• Reactivity

– Operating at the speed of the environment

 These features look more like hardware!

Current Bottleneck
• Intrinsic application complexity grows rapidly

Analog / digital interface: more objects to control
Embedded algorithmics: signal, display, alarm, power...
Richer hardware architecture: µP, DSP, ASIP, ASIC, FPGA

• Performance adds complexity
Footprint / power minimization interferes with logical design
Technology independence is still difficult

=> Verification bottleneck
Applications hard to verify off-site
Hardware / software interaction difficult

Software Engineering
(or, how do we build reliable systems?)

Things Have to Change!

• Pressure on productivity of design engineers working on
complex systems.

• Time has come to design hardware using software
engineering - rather than hw engg - methodologies.

• Complexity of system is the basic problem, and Moore’s
Law doubles complexity every 18 months.

• Advances in software engineering help produce
complex systems with more easily available design
skills, making large profits

• We expect new designers, with/without hardware design
skills, will design hardware in future

Designer Productivity
• “The Mythical Man Month” by Frederick Brooks ’75
• More designers on team => lower productivity because

of increasing communication costs between groups
• Consider 1M transistor project:

- Say, a designer has productivity of 5000 transistor/mth
- Each extra designer => decrease of 100 transistor/mth

productivity in group due to comm. costs
– 1 designer 1M/5000 => 200mth
– 10 designer 1M/(10*4100) => 24.3mth
– 25 designer 1M/(25*2600) => 15.3mth
– 27 designer 1M/(27*2400) => 15.4mth

• Need new design technology to shrink design gap

Source: Embedded System
Design: Frank Vahid/ Tony Vargis
(John Wiley & Sons, Inc.2002)

Design Productivity Gap
• Designer productivity grown over the last decade
• Rate of improvement has not kept pace with the chip-

capacity growth
• 1981: leading edge chip:

– 100 designers * 100 trans/mth => 10k trans complexity

• 2010: leading edge Intel chip using 45nM technology:
– > 1B transistor complexity

• 2015: Leading edge Apple A9 using 14nM technology:
– > 2B transistor complexity

• 2020: Apple A14 chip using 5nM technology:
– > 11.8B transistor complexity

• 2023: Apple A16 Bionic chip (iPhone 14) using 3nM tech:
– > 16-20B transistor complexity

• Designers at avg. of $10k pm
=> cost of building leading edge chips has gone from
$1M (‘81)-> $300M (2002)-> $1B (2010)-> $5B (2020)-> $10B+ (2023)

• Need paradigm shift to cope with complexities Source: Embedded System
Design: Frank Vahid/ Tony Vargis
(John Wiley & Sons, Inc.2006)
And others.

Chip Design Cost

Time to Market Design Metric

• Simplified revenue model
– Product life = 2W, peak at W
– Time of market entry defines a triangle,

representing market penetration
– Triangle area equals revenue

• Loss
– The difference between the on-time

and delayed triangle areas
• Avg. time to market today = 8 mth
• 1 day delay may amount to $Ms

– see Sony Playstation vs XBox

On-time Delayed
entry entry

Peak revenue

Peak revenue from
delayed entry

Market rise Market fall

W 2W

Time

D

On-time

Delayed

R
ev

en
ue

s (
$)

Source: Embedded System Design: Frank Vahid/ Tony Vargis (John Wiley & Sons, Inc.2002)

Losses due to delayed market entry

• Area = 1/2 * base * height
– On-time = 1/2 * 2W * W
– Delayed = 1/2 * (W-D+W)*(W-D)

• Percentage revenue loss
= (D(3W-D)/2W2)*100%

• Try some examples

On-time Delayed
entry entry

Peak revenue

Peak revenue from
delayed entry

Market rise Market fall

W 2W

Time

D

On-time

Delayed

R
ev

en
ue

s (
$)

– Lifetime 2W=52 wks, delay D=4 wks
– (4*(3*26 –4)/2*26^2) = 22%
– Lifetime 2W=52 wks, delay D=10 wks
– (10*(3*26 –10)/2*26^2) = 50%
– Delays are costly!

Source: Embedded System Design: Frank Vahid/ Tony Vargis (John Wiley & Sons, Inc.2006)

NRE and unit cost metrics

• But, must also consider time-to-market

• Compare technologies by costs -- best depends on
quantity
– Technology A: NRE=$2,000, unit=$100
– Technology B: NRE=$30,000, unit=$30
– Technology C: NRE=$100,000, unit=$2

Source: Embedded System Design: Frank Vahid/ Tony Vargis (John Wiley & Sons, Inc.2002)

Trends (Moore’s Law)
• IC transistor capacity doubles every 18 mths

– 1981: leading edge chip had 10k transistors
– 2002: leading edge chip has 150M transistors
– 2010: Leading edge Intel processor has 0.5B trans in 107sq.mm
– 2014: Leading edge Intel processor has 2.0B trans in 89sq.mm
– 2019: Leading edge Intel processor has 8.5B trans in 83sq.mm
– 2022: Apple A16 processor has 16B transistors

• Why?
– Reducing transistor size, increasing chip size, clever circuits
– Changing due to paradigm shifts: sys design tools, nanotech, …

Trends (Designer Productivity)

• Designer productivity improved due to better tools:
• Compilation/Synthesis tools
• Libraries/IP
• Test/verification tools
• Standards
• Languages and frameworks (Handel-C, Lava, Esterel, …)
• 1981: designer produced 100 transistors per month
• 2002: designer produces 5000 transistors per month
• 2022: designer produces ???

Software Engineering…
Why we need it?

• Therac 25 : lethal irradiations
• Dharan's Patriot
• Ariane V
• Mars Explorer, Mars Polar Lander
• High-end automobile problems
• Pentium, SMP CPU networks
• Telephone and camera bugs

Bugs grow faster than Moore's law!

Enemy number 1 : the bug

Other Important Issues
• Hardware / software partitioning

Hardware / software source code independence
Link between programming and performance analysis

• Operating Systems / scheduling
Well-studied field: rate-monotonic, earliest deadline first, etc.
Newer computation models need less explicit scheduling

• Fault tolerance
Software redundancy, voting algorithms, etc.
CRCs, TT networks

How to avoid or control bugs?
• Traditional : better verification by fancier simulation

• Next step : better design using specific techniques
Better and more reusable specifications
Simpler computation models, formalisms, semantics
Reduce architect / designer and customer / provider distance
Reduce hardware / software distance

• Requires better tooling
Higher-level models and synthesis
Formal property verification / program equivalence
Certified libraries

Anatomy of Embedded Applications
• CC : continuous control, signal processing

Differential equation solving, filters
Specs and simulation in Matlab / Scilab, manual or automatic code

• FSM : finite state machines, state transition systems
Discrete control, protocols, networking, drivers, security, etc.
Flat or hierarchical state machines, manual or automatic code

• Calc : calculation intensive
Navigation, security, etc.
C, manual + libraries

• Web : web-like navigation, audio / video streaming
Consumer electronics, infotainment systems
Data-flow networks, embedded Java

BMW 745i : Prelude To Complexity

Another Life Cycle
Example : The
Software Error

External view

• Rough running engine, possibly stall
• Severity: 6 incidents in 5,470 cars with 2 rear endings

– “alleged injury” of BMW passengers
– Fault of drunk or inattentive following drivers

“Engine malfunction,
drive with moderation”

The problem: software error, a desynchronization
of the valvetronic motors

BMW Cost
• To repair: Reprogram ECU
• Recalls not uncommon in industry

– BMW 5,470 cars @ $68,500 = Rev $372 mil
• Compare Cost: Recall BMW X5

– 164,000 units @ $66,800 = Rev $10 bil.
– ~$5 Million
– ~$30 per SUV

Bosch EMU For Four Wheeler (Multi Cylinder)

Source: Bosch Brochure : Ref 6

Design Issues
(How do we build these systems?)

Functional Design & Mapping

HW1 HW2 HW3 HW4
Hardware Interface

RTOS/Drivers

Th
re
adArchitectural

Design

F1
F2

F3
F4

F5
Functional
Design

(F3) (F4)

(F5)

(F2)

Source:
Ian Phillips, ARM
VSIA 2001

Synchronous languages
• Started in the 80's

Esterel : Ecole des Mines / INRIA, SyncCharts : U. Nice
Lustre : IMAG, Signal : INRIA Rennes
Lava : Chalmers, Xilinx

• Started in the mid-90's
•Handel-C: University of Oxford, Celoxica Inc.

• Industrial use in the 90's
Lustre / SCADE : nuclear plants (Schneider), avionics (Airbus)
Esterel : avionics (Dassault), telecom

 => Full development in the 2000's
avionics: Airbus, Dassault, Elbit, Eurocopter, SNECMA, Thales,...
automotive: AUDI, GM, PSA,...
hardware pilot projects / experiments: TI, STM, Xilinx, Intel, Thales

• Design of Solutions
• Investigation
• Modern Tool Usage
• Individual & Team Work
• Communication

KNOWLEDGE OR SKILLS REQUIRED

How do we get there?

Conclusion
• We have simultaneous optimisations of competing

design metrics: speed, size, power, complexity, etc.
• Software engineering issues apply

– Non-recurring engineering costs are critical
– Design-productivity / time-to-market is paramount

• Traditional technologies unequipped to build
complex embedded systems
– Need unified view of hardware/ software co-design.

• Design focus at higher levels of abstraction =>
Abstract specs refined into programs

then into gates and logic

