Embedded Systems
(Software)

Prof. Kavi Arya

Embedded System
Diversity

Beware of the computer!

é)} (@ "v\@?w T
= 9 D ,
St
2

* From computers to embedded & networked SoCs ... loT
« Complete change in device interaction
« Growing number of critical applications

Common Design Metrics

NRE (Non-recurring engineering) cost

Unit cost

Size (bytes, gates)

Performance (execution time)

Power (more power=> more heat & less battery time)
Flexibility (ability to change functionality)

Time to prototype

Time to market

Maintainability

Correctness

Safety (probability that system won’t cause harm)

Apple “A” series SoC

 Apple A4 (2010)
— for iPad ARM based SoC @1GHz w/integ. GPU ($1Bn to devlp)

« Apple A5 (2012)
— Based on dual-core ARM Cortex-A9 MPCore CPU
— $4B development facility by Samsung in Texas
— Clocked at 1 GHz (auto adj. frequency to save battery)
— ISP for face detection, wh.balance & automatic image stabilization
— "EarSmart" unit from Audience for noise canceling
— CPU portion 2x as powerful as the original iPad
— GPU up to 7x as powerful A4
— Cost 75% more than predecessor

« Apple A6x (2013)
— 1.4 GHz Apple-designed ARMv7 based dual-core CPU (Swift)
— Integrated quad-core PowerVR SGX 554MP4 GPU @300 MHz
— 2x computing power + graphics perf. of previous Apple A5X
— 32 nm process => chip is 123 mm? largel® (26% larger than AB).

http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/Multi-core_processor
http://en.wikipedia.org/wiki/PowerVR
http://en.wikipedia.org/wiki/Apple_A5X
http://en.wikipedia.org/wiki/Apple_A6X

(Apple) Processor Trends

Produ
Year Model Specs ct Spd Gfx Size Tech.
1.3 GHz ARMv7 based
2012 A6 dual-core CPU (Swift) iPhone5 2x 2X 22% smaller 32nM
1.3-1.4GHz 64-bit
ARMvS8-A dual-core CPU
(Cyclone) integrated iPhone
PowerVR G6430 GPU, 5S, iPad iB
31x64bit GP regs, Mini2 & transistors
2013 A7 32x128bit FP regs 3 2X 2X in 102sg.mm 28nM
1.4GHz 64-bit ARMvV8-A 13% less in
dual-core CPU & size, 2B
integrated PowerVR iPhone6 transistors
2014 A8 GX6450 GPU &6+ 25% 50% 89sg.mm 20nM
iPhone
64-bit ARM based system 6S & 70% 90%
2015 A9 on a chip (S00C) 6S+ more more 14nM

(Apple) Processor Trends

Year Model Specs Product Spd Gfx Size Tech.

64-bit ARMv8-A 6-core
CPU (Bionic) 2 high
perf and 4 high 25% 70% 4.3B

2017 A11 efficiency iPhone 8 faster faster transistors 10nM

95%
faster

64-bit ARM 2+4 core iPhone XS 35% multi 6.9B

2018 A12 CPU (Bionic) & XR faster core transistors 7nM
64-bit ARM 6 core with
2 high perf cores
running at 2.65GHz 20% 20%
(Lightening) with ML faster faster
accelerators - AMX with with
blocks; & 4 energy 30% 40%
efficient cores less lower 8.5B

2019A13 (Thunder) iPhone 11 pwr pwr transistors 7nM
Apple A14 Bionic
(hexa-core 64-bit
ARM64 "mobile SoC", 40% 30% 11.8B

2020A14 SIMD, caches) iPhone 12 faster faster transistors 5nM
Apple A16 Bionic
6-core 64-bit

2022 ARMVS8.6A SoC 40% 50% 16.0B

Al6 6 core Neural Engine iPhone 14 faster faster transistors 4nM

Challenges

« Tolerance for defects
* Development Cycles
« Resource availability
« Ability to manage regs

 Ability to ensure long
term maintenance

< ...Decreasing Mission & Safety-Critical Pressures Increasing... >

Safety critical requirements in

« Aerospace & defence, Energy
Transportation, Industrial, Medical

Requirement changes, life span
Application complexity

Cost of code testing, validation &
verification & certification

Need for systems & software
design reusability

Packaging & ergonomics are key
Mechatronics

Mass deployment — less scope
for error

Current Technology

Extrapolation of traditional software techniques

* Programs written in conventional languages
C subsets, MISRA C for automobile
Java for telephone / smartcards

* Glued together by OS services
A wide variety of embedded OS (VxWorks, OSEK)

* With some reuse and standardisation effort

- Classical software models largely inadequate
*Too powerful, hard to verify
often subsets of rich languages=>doesn’'t make them simpler

Why Is Embedded Software Not Just
Software On Small Computers?

 Embedded = Dedicated
* Interaction with physical processes

— Sensors, actuators, processes
« Critical properties are not all functional

— Real-time, fault recovery, power, security, robustness
 Heterogeneity

— Hardware/software tradeoffs, mixed architectures
« Concurrency

— Interaction with multiple processes
* Reactivity

— Operating at the speed of the environment

= These features look more like hardware!

Current Bottleneck

* Intrinsic application complexity grows rapidly

Analog / digital interface: more objects to control
Embedded algorithmics: signal, display, alarm, power...
Richer hardware architecture: OP, DSP, ASIP, ASIC, FPGA

* Performance adds complexity
Footprint / power minimization interferes with logical design
Technology independence is still difficult

=> \/erification bottleneck
Applications hard to verify off-site
Hardware / software interaction difficult

Software Engineering

(or, how do we build reliable systems?)

Things Have to Change!

Pressure on productivity of design engineers working on
complex systems.

Time has come to design hardware using software
engineering - rather than hw engg - methodologies.

Complexity of system is the basic problem, and Moore’s
Law doubles complexity every 18 months.

Advances in software engineering help produce
complex systems with more easily available design
skills, making large profits

We expect new designers, with/without hardware design
skills, will design hardware in future

Designer Productivity
“The Mythical Man Month” by Frederick Brooks '75

More designers on team => |lower productivity because
of increasing communication costs between groups

Consider 1M transistor project:
- Say, a designer has productivity of 5000 transistor/mth

- Each extra designer => decrease of 100 transistor/mth
productivity in group due to comm. costs

— 1 designer 1M/5000 => 200mth

— 10 designer 1M/(10*4100) => 24.3mth
— 25 designer 1M/(25*2600) => 15.3mth
— 27 designer 1M/(27*2400) => 15.4mth

Need new design technology to shrink design gap

Source: Embedded System
Design: Frank Vahid/ Tony Vargis
(John Wiley & Sons, Inc.2002)

Design Productivity Gap

Designer productivity grown over the last decade

Rate of improvement has not kept pace with the chip-
capacity growth

1981: leading edge chip:

— 100 designers * 100 trans/mth => 10k trans complexity

2010: leading edge Intel chip using 45nM -‘

— > 1B transistor complexity g S

2015: Leading edge Apple A9 using 14nM technology:

— > 2B transistor complexity

2020: Apple A14 chip using 5nM technology:

— > 11.8B transistor complexity

2023: Apple A16 Bionic chip (iPhone 14) using 3nM tech:

— > 16-20B transistor complexity

Designers at avg. of $10k pm

=> cost of building leading edge chips has gone from
$1M (‘81)-> $300M (2002)-> $1B (2010)-> $5B (2020)-> $10B+ (2023)

. - - . m Source: Embedded System
Need paradigm shift to cope with complexitieg:s eyt ve
And others.

Advanced Design Cost

$580M

$435M

$145M

Chip Design Cost

$70.3M

$106.3M

Validation

= Prototype

= Physical

= Venfication

= Architecture
= IP Qualification

10nm

nm

Revenues ($)

Time to Market Design Metric

« Simplified revenue model
Peak revenue — Product life = 2W, peak at W

Peak revenue from — Time of market entry defines a triangle,
delayed entry representing market penetration

— Triangle area equals revenue

On-

Market rise Market fall

e Loss
— The difference between the on-time
and delayed triangle areas

Z][) W . Avg. time to market today = 8 mth

On-time* Delayed Time 1 day delay may amount to $Ms
entry entry
— see Sony Playstation vs XBox

Source: Embedded System Design: Frank Vahid/ Tony Vargis (John Wiley & Sons, Inc.2002)

Revenues ($)

Losses due to delayed market entry

 Area =1/2 * base * height
Peak revenue — On-time =1/2*2W*W

Peak revenue from - Delayed = 1/2 * (W-D+W)*(W-D)
delayed entry
On- * Percentage revenue loss
Market rise Market fall — (D(3W_D)/2W2)*1 OO%
be * Try some examples
'[+— — Lifetime 2W=52 wks, delay D=4 wks
| Z ’ v LT (4%(3%26-4)/2%2612) = 22%
Oy Do e _ Lifetime 2W=52 wks, delay D=10 wks

— (10*(3*26 —10)/2*26"2) = 50%
— Delays are costly!

Source: Embedded System Design: Frank Vahid/ Tony Vargis (John Wiley & Sons, Inc.2006)

NRE and unit cost metrics

« Compare technologies by costs -- best depends on
guantity
— Technology A: NRE=$2,000, unit=$100
— Technology B: NRE=%$30,000, unit=$30
— Technology C: NRE=%$100,000, unit=$2

S 200 000 $200

sy et

LA =

 But, must also consider time-to-market

Source: Embedded System Design: Frank Vahid/ Tony Vargis (John Wiley & Sons, Inc.2002)

Trends (Moore’s Law)

 IC transistor capacity doubles every 18 mths

— 1981: leading edge chip had 10k transistors

— 2002: leading edge chip has 150M transistors

— 2010: Leading edge Intel processor has 0.5B trans in 107sq.mm

— 2014: Leading edge Intel processor has 2.0B trans in 89sq.mm

— 2019: Leading edge Intel processor has 8.5B trans in 83sgq.mm
— 2022: Apple A16 processor has 16B transistors

+ Why?
— Reducing transistor size, increasing chip size, clever circuits
— Changing due to paradigm shifts: sys design tools, nanotech, ...

Trends (Designer Productivity)

 Designer productivity improved due to better tools:
« Compilation/Synthesis tools
« Libraries/IP
« Test/verification tools
« Standards
 Languages and frameworks (Handel-C, Lava, Esterel, ...)
 1981: designer produced 100 transistors per month
« 2002: designer produces 5000 transistors per month
« 2022: designer produces ???

Software Engineering...
Why we need it?

Enemy number 1 : the bug

¥

——

Bugs grow faster than Moore's law! 4

P /
% \.””
EEERERITER,

* Therac 25 : lethal irradiations

« Dharan's Patriot

 Ariane V

» Mars Explorer, Mars Polar Lander
* High-end automobile problems

* Pentium, SMP CPU networks
 Telephone and camera bugs

i

#
.
-

L\
‘!
.

#’
#’
#

' 4

' 4

A

\)

Other Important Issues

* Hardware / software partitioning

Hardware / software source code independence
Link between programming and performance analysis

» Operating Systems / scheduling

Well-studied field: rate-monotonic, earliest deadline first, etc.
Newer computation models need less explicit scheduling

 Fault tolerance

Software redundancy, voting algorithms, etc.
CRCs, TT networks

How to avoid or control bugs?

- Traditional : better verification by fancier simulation

* Next step : better design using specific techniques
Better and more reusable specifications
Simpler computation models, formalisms, semantics
Reduce architect / designer and customer / provider distance
Reduce hardware / software distance

- Requires better tooling
Higher-level models and synthesis

Formal property verification / program equivalence
Certified libraries

Anatomy of Embedded Applications

« CC : continuous control, signal processing
Differential equation solving, filters
Specs and simulation in Matlab / Scilab, manual or automatic code

« FSM : finite state machines, state transition systems
Discrete control, protocols, networking, drivers, security, etc.
Flat or hierarchical state machines, manual or automatic code

e Calc : calculation intensive
Navigation, security, etc.
C, manual + libraries

« \Web : web-like navigation, audio / video streaming
Consumer electronics, infotainment systems
Data-flow networks, embedded Java

f‘ —

t.’_'_‘ ——

i ————

BMW 7451 : Prelude To Complexity
b B B ==
227

i

Another Life Cycle
Example : The
Software Error

External view

The problem: software error, a desynchronization
of the valvetronic motors

* BT —

“Engine malfunction,

drive with moderation”

* Rough running engine, possibly stall

« Severity: 6 incidents in 5,470 cars with 2 rear endings
— “alleged injury” of BMW passengers
— Fault of drunk or inattentive following drivers

BMW Cost

* To repair. Reprogram ECU

» Recalls not uncommon in industry
— BMW 5,470 cars @ $68,500 = Rev $372 mil

 Compare Cost: Recall BMW X5
— 164,000 units @ $66,800 = Rev $10 bil.
— ~$5 Million
— ~$30 per SUV

Bosch EMU For Four Wheeler (Multi Cylinder)

SIE

Air-mass meter with
temperature sensor

[CYEIIA
BOSCH ©

[o n =) n /
Electronic
control unit

Diagnosis interface «
Malfunction indicator lamp

| |

&

Immobilizer

CAN

i Accelerator -
pressure .
pump Injector P' medule
Fuel rall | Ignition coil
i
Pressure control
valve Phase sensor l
l—ﬁ‘
Oxygen
Fuel pressure : A sensor
intake- | ||sensor 1| Temp_/] N\, (LSV)
manifold Knock (e || sensor
sensor Sensor e
x ' Pre-catalyst
EGR-valve
<\ Expaust-gas
S— temperalure
sensor
1)
- catayst
Delivery module incl. 7
low pressure pump €
~1 Oxygen
B Bosch components specifically for DE (ng%m

[Bosch components

Source: Bosch Brochure : Ref 6

Design Issues

(How do we build these systems?)

Functional Design & Mapping

F2 Functional
F1 \j/{ Q\MI F5 Design
S |
Taao)
/k) F3 \f) l4.\\ b
| I

Source:

Ian Phillips, ARM
~ VSIA 2001

\ >
/ \\ /\r /L)|
Architectogal | N N s
: N
Design |/ ! N§
\ Hardware Interface

Synchronous languages

 Started in the 80's
Esterel : Ecole des Mines / INRIA, SyncCharts : U. Nice
Lustre : IMAG, Signal : INRIA Rennes
Lava : Chalmers, Xilinx
 Started in the mid-90's
*Handel-C: University of Oxford, Celoxica Inc.
* Industrial use in the 90's

Lustre / SCADE : nuclear plants (Schneider), avionics (Airbus)
Esterel : avionics (Dassault), telecom

=> Full development in the 2000's
avionics: Airbus, Dassault, Elbit, Eurocopter, SNECMA, Thales,...
automotive: AUDI, GM, PSA,...
hardware pilot projects / experiments: Tl, STM, Xilinx, Intel, Thales

How do we get there?

KNOWLEDGE OR SKILLS REQUIRED

» Design of Solutions
 Investigation
 Modern Tool Usage
 Individual & Team Work
« Communication

Conclusion

We have simultaneous optimisations of competing
design metrics: speed, size, power, complexity, etc.
Software engineering issues apply

— Non-recurring engineering costs are critical

— Design-productivity / time-to-market is paramount
Traditional technologies unequipped to build
complex embedded systems

— Need unified view of hardware/ software co-design.

Design focus at higher levels of abstraction =>
Abstract specs refined into programs
then into gates and logic

