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Abstract 
 

This white paper addresses the issue of cost and productivity improvement in 
the development of safety-critical software for avionics systems. Such 
developments, driven by the ED-12/DO-178B guidelines traditionally require 
very difficult and precise development and verification efforts. This paper 
first reviews traditional development practices and then the optimization of 
the development process with the SCADE Suite methodology and tool. 
SCADE Suite supports “correct by construction” and automated production 
of the life cycle elements. The effects on savings in the development and 
verification activities are presented in detail. Industry examples demonstrate 
the efficiency of this approach, and business benefits are analyzed. 
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1 Executive Summary 

Companies developing avionics software are facing a challenge. Safety is an absolute requirement.  
This makes the development of such systems very expensive, as shown by the figures below, 
observed for avionics software: 
• The average development and test of 10K Lines of Code (KLOC) level B software is 16 

person-years 
• The cost of a minor bug is in the range $100K-$500K 
• The cost of a major bug is in the range $1M-$500M 
 
The growing complexity of those systems increases the cost and time for their development to a 
level that conflicts with business constraints such as time-to-market and competitiveness. 
 
This paper addresses the issue of productivity in the development of software for civil aircrafts, as 
specified in the guideline ED-12/DO-178B and explores the nature of these costs and how to 
reduce them by adopting efficient methods and tools. 
 
First, an introduction to DO-178B guidelines is provided, to illustrate how safety objectives lead to 
high costs when traditional development processes are used. In particular, verification activities 
are analyzed: including testing, analysis and review requirements. Also explored is the process for 
change or error correction.  It is shown that these verification activities are the cost-driver and the 
bottleneck in project schedule. 
 
Next, SCADE Suite, an encompassing method and tool, is described. SCADE Suite maintains the 
highest quality standards while reducing costs based on a “correct by construction” approach 
SCADE Suite provides:  
• A unique and accurate software description that can be shared among project participants. 
• The prevention of many specification or design errors. 
• The early identification of most remaining design errors allowing them to be fixed in the 

requirements/design phase, rather than in the code testing or integration phase. 
• Qualified code generation that not only saves writing the code by hand but also verifying it. 
 
Industrial application examples at Eurocopter and Airbus are described, which demonstrate the 
efficiency of the approach. 
 
Finally, business benefits of the investment in SCADE Suite are analyzed. They include a 50% 
cost reduction compared to the traditional approach, a dramatic reduction in the time to implement 
a change (from weeks to days), and a significant improvement in the ability to reuse components, 
all leading to a high competitive advantage. 
 
Details of effort reduction are given in appendix. 
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2 The Challenge of Developing Software for Safety-
Critical Systems 

Companies developing avionics software are facing a challenge. Safety is not an option but an 
absolute requirement.  Traditionally this has made the development of such systems very 
expensive, as shown by the figures below, observed for avionics software: 
• The average development and test of 10K Lines of Code (KLOC) level B software is 16 

person-years. 
• The average avionics software is 46% over budget and 35% behind schedule. 
• The time to market is 3-4 years. 
• The cost of a minor bug is in the range $100K-$500K. 
• The cost of a major bug is in the range $1M-$500M. 
 
To compound this, the amount and complexity of software increase every year. As an example, the 
progression of software size for the Airbus family of avionics software is shown below: 
 

Aircraft A310 (70’) A320 (80’) A340 (90’) 
Number of digital units 77 102 115 
Volume of onboard software 
in Mbytes 

4 10 20 

 
 
The decades of the ‘70’s, 80’s, and 90’s have also seen increasing competitive pressures and an 
explosion of costs. 
 
In order to complete projects within cost and schedule constraints, companies developing safety-
critical software feel they have had no choice but to innovate in their development processes. 
 
In this paper we address the issue of productivity in the development of airborne software, as 
guided by ED-12/DO-178B. We will identify the areas of cost and explore how to reduce them by 
adopting efficient methods and tools. 
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3 The ARP 4754 and ED-12/DO-178B Guidelines for the 
Development of Safety-Critical Systems and Software 

This chapter introduces ED-12B/DO-178B and reviews the activities performed over the 
development cycle when following ED-12/DO-178B guidelines. It also defines some of the 
terminology particular to DO-178B. We will then analyze why traditional development is so 
expensive. 

3.1 What Are DO-178B and ARP 4754? 

The avionics industry requires that safety-critical software be assessed according to strict United 
States Federal Aviation Administration (FAA) and Europe Joint Aviation Authority (JAA) 
guidelines before it may be used on any commercial airliner. ARP 4754 and DO-178B are 
guidelines, which are used both by the companies developing airborne equipment and by the 
certification authorities. 

3.1.1 ARP 4754 

ARP 4754 [ARP4754] was defined in 1996 by the SAE (Society of Automotive Engineers).  
This document discusses the certification aspects of highly integrated or complex systems installed 
on aircraft, taking into account the overall aircraft-operating environment and functions. The term 
“highly-integrated” refers to systems that perform or contribute to multiple aircraft-level functions. 
The guidance material in this document was developed in the context of Federal Aviation 
Regulations (FAR) and Joint Airworthiness Requirements (JAR) Part 25. In general, this material 
is also applicable to engine systems and related equipment.  
ARP 4754 addresses the total life cycle for systems that implement aircraft-level functions. It 
excludes specific coverage of detailed systems, software and hardware design processes beyond 
those of significance in establishing the safety of the implemented system. More detailed coverage 
of the software aspects of design are dealt with in RTCA document DO-178B and its EUROCAE 
counterpart, ED-12B. Coverage of complex hardware aspects of design are dealt with in RTCA 
document DO-254 [DO-254] . 

3.1.2 DO-178B 

ED-12/DO-178B [DO-178B/ED-12B] was first published in 1992 by EUROCAE (a non-profit 
organization addressing aeronautic technical problems) and RTCA (Requirements and Technical 
Concepts for Aviation). It was written by a group of experts from certification authorities and 
companies developing airborne software. It provides guidelines for the production of software for 
airborne systems and equipment. The objective of the guideline is to assure that software performs 
its intended function with a level of confidence in safety that complies with airworthiness 
requirements. 
These guidelines specify: 
• Objectives for software life cycle processes. 
• Description of activities and design considerations for achieving those objectives. 
• Description of the evidence that indicate that the objectives have been satisfied. 

3.1.3 Relationship between ARP 4754 and DO-187B 

ARP 4754 and DO-178B are complementary guidelines: 
 ARP 4754 provides guidelines for the system level processes. 
 DO-178B provides guidelines for the software development processes. 
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The information flow between the system processes and software processed is summarized by 
Figure. 1. 

System life cycle processes (ARP 4754)

Software life cycle processes (DO-178B)

(part of implementation processes, for ARP 4754)

System safety assessment process

System requirements 
allocated to software

Software level(s)

Design constraints

Hardware definition

Fault containment boundaries

Error sources 
identified/eliminated

Software requirements
& architecture

System life cycle processes (ARP 4754)

Software life cycle processes (DO-178B)

(part of implementation processes, for ARP 4754)

System safety assessment process

System requirements 
allocated to software

Software level(s)
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Hardware definition

Fault containment boundaries

Error sources 
identified/eliminated

Software requirements
& architecture

 
Figure. 1  Relationship between ARP4754 and DO-178B Processes 

 
ARP 4754 identifies the relationships with DO-178B in the following terms: 
The point where requirements are allocated to hardware and software is also the point where the 
guidelines of this document transition to the guidelines of DO-178B (for software), DO-254 (for 
complex hardware), and other existing industry guidelines. The following data is passed to the 
software and hardware processes as part of the requirements allocation: 

a. Requirements allocated to hardware. 
b. Requirements allocated to software. 
c. Development assurance level for each requirement and a description of associated 
failure condition(s), if applicable. 
d. Allocated failure rates and exposure interval(s) for hardware failures of significance. 
e. Hardware/software interface description (system design). 
f. Design constraints, including functional isolation, separation, and partitioning 
requirements. 
g. System validation activities to be performed at the software or hardware development 
level, if any. 
h. System verification activities to be performed at the software or hardware development 
level. 

3.1.4 Development Assurance Levels 

ARP4754 defines guidelines for the assignment of so called “Development Assurance Levels” to 
the system, to its components, and to software, related to the most severe failure condition of the 
corresponding part. 
 
ARP4754 and ED-12/DO-178B define in common five “Development Assurance Levels”: 
 

Level Effect of Anomalous Behavior 
A Catastrophic failure condition for the aircraft (ex: aircraft crash) 
B Hazardous/severe failure condition for the aircraft (ex: several persons could be 

injured). 
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Level Effect of Anomalous Behavior 
C Major failure condition for the aircraft a (ex: flight management system could be 

down, the pilot would have to do it manually). 
D Minor failure condition for the aircraft (ex: some pilot-ground communications 

could have to be done manually). 
E No effect on aircraft operation or pilot workload (ex: entertainment features may 

be down). 
 
This paper mainly targets level A, B and C software. 

3.1.5 Objectives are the Essence of DO-178B 

The essence of DO-178B is the formulation of appropriate objectives, and the verification that 
these objectives have been achieved. The authors of DO-178B acknowledged that objectives are 
more essential and stable than specific procedures. The ways of achieving an objective may vary 
from one company to another, and may vary over time, with the evolution of methods, techniques 
and tools. DO-178B never states that one should use design method X, or coding rules Y, or tool 
Z. DO-178B does not even impose a specific life-cycle. 
The general approach is the following: 

 Ensure that appropriate objectives are defined. For instance: 
a. The development assurance level of the software. 
b. The design standards. 

 Define procedures for the verification of the objectives. The achievement of the 
objectives form transition criteria from one activity to another. For instance: 

a. Design review. 
b. Software integration testing. 

 Define procedures for verifying that the above-mentioned verification activities have 
been performed satisfactorily. For instance: 

a. Remarks of document reviews have been answered. 
b. Structural coverage of code is achieved. 

3.1.6 DO-178B Processes Overview 

ED-12/DO-178B structures activities as a hierarchy of “processes”, depicted by Figure 2. The term 
“process” will appear several times in the document. DO-178B defines three top-level groups of 
processes: 
• The software planning processes that define and coordinate the activities of the software 

development and integral processes for a project.  This process is beyond the scope of this 
paper. 

• The software development processes that produce the software product. These processes are 
the software requirements process, the software design process, the software coding process, 
and the integration process. 

• The integral processes that ensures the correctness, control, and confidence of the software 
life-cycle processes and their outputs. The integral processes are the software verification 
process, the software configuration management process, the software quality assurance 
process, and the certification liaison process. The integral processes are performed 
concurrently with the software development processes throughout the software life-cycle.  
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Figure 2  DO-178B Life-cycle processes structure 

 
In the remainder of this document we will focus on the development process and on the 
corresponding planning and verification activities. 

3.2 DO-178B Development Processes 

The software development processes, as depicted by Figure 3 are composed of:  
• The software requirements process, which usually produces the high-level requirements 

(HLR). 
• The software design process, which usually produces the low-level requirements (LLR) and 

the software architecture. 
• The software coding process which produces the source code. 
• The integration process which produces object code and builds up to the integrated system or 

equipment. 
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Figure 3  DO-178B Development processes 
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The high-level software requirements (HLR) are produced directly through analysis of system 
requirements and system architecture and their allocation to software. They include specifications 
of functional and operational requirements, timing and memory constraints, hardware and software 
interfaces, failure detection and safety monitoring requirements, partitioning requirements. 
The HLR are further developed during the software design process, thus producing the software 
architecture and the low-level requirements (LLR). These include descriptions of the input/output, 
the data and control flow, resource limitations, scheduling and communications mechanisms, and 
software components. If the system contains “deactivated” code (see glossary), description of the 
means to ensure that this code cannot be activated in the target computer is also required. 
Through the coding process, the low-level requirements are implemented as source code. 
The source code is compiled and linked by the integration process up to an executable code linked 
to the target environment. 
At all stages traceability is required: between system requirements and HLR, between HLR and 
LLR, between LLR and code, and also between tests and requirements. 
 

3.3 DO-178B Verification Processes 

3.3.1 Objectives of Software Verification 

The purpose of the software verification processes is “to detect and report errors that may have 
been introduced during the software development processes”. DO-178B defines verification 
objectives, rather than specific verification techniques, since the latter may vary from one project 
to another and/or over time. 
Testing is part of the verification processes, but verification is not just testing. The verification 
processes also rely on reviews and analyses. Reviews are qualitative and generally performed 
once, while analyses are more detailed and should be reproducible (ex: conformance to coding 
standards). 
Verification activities cover all the processes, from the planning process to the development 
process, and there are even verifications of the verification activities. 

3.3.2 Reviews and Analyses of the High-Level Requirements 

The objective of reviews and analyses is to confirm that the HLR satisfy the following: 
a. Compliance with the system requirements. 
b. Accuracy and consistency: each HLR is accurate and unambiguous and sufficiently detailed, 

and requirements do not conflict with each other. 
c. Compatibility with target computer. 
d. Verifiability: Each HLR has to be verifiable. 
e. Conformance to standards, as defined by the planning process. 
f. Traceability with the system requirements. 
g. Algorithm accuracy. 

3.3.3 Reviews and Analyses of the Low-Level Requirements 

The objective of these reviews and analyses is to detect and report requirements errors that may 
have been introduced during the software design process. These reviews and analyses confirm that 
the software low-level requirements satisfy these objectives:  
a. Compliance with high-level requirements: The software low-level requirements satisfy the 

software high-level requirements.  
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b. Accuracy and consistency: Each low-level requirement is accurate and unambiguous and the 
low-level requirements do not conflict with each other. 

c. Compatibility with the target computer: No conflicts exist between the software requirements 
and the hardware/software features of the target computer; especially, the use of resources 
(such as bus loading), system response times, and input/output hardware.  

d. Verifiability: Each low-level requirement can be verified.  
e. Conformance to standards: The Software Design Standards (defined by the software planning 

process) were followed during the software design process, and deviations from the standards 
are justified.  

f. Traceability: Ensure that the high-level requirements were developed into the low-level 
requirements.  

g. Algorithm aspects: Ensure the accuracy and behavior of the proposed algorithms, especially in 
the area of discontinuities (ex: mode changes, crossing value boundaries).  

h. The SW architecture is compatible with the HLR, consistent, compatible with the target 
computer, verifiable, and conforms to standards.  

i. Software partitioning integrity is confirmed. 
 

3.3.4 Reviews and Analyses of the Source Code 

The objective is to detect and report errors that may have been introduced during the software 
coding process. These reviews and analyses confirm that the outputs of the software coding 
process are accurate, complete, and can be verified. Primary concerns include correctness of the 
code with respect to the LLRs and the software architecture, and conformance to the Software 
Code Standards. These reviews and analyses are usually confined to the Source Code. The topics 
should include:  
a.  Compliance with the low-level requirements: The Source Code is accurate and complete with 

respect to the software low-level requirements, and no Source Code implements an 
undocumented function.  

b.  Compliance with the software architecture: The Source Code matches the data flow and control 
flow defined in the software architecture.  

c.  Verifiability: The Source Code does not contain statements and structures that cannot be 
verified and the code does not have to be altered to test it.  

d.  Conformance to standards: The Software Code Standards (defined by the software planning 
process) were followed during the development of the code, especially complexity restrictions 
and code constraints that would be consistent with the system safety objectives. Complexity 
includes the degree of coupling between software components, the nesting levels for control 
structures, and the complexity of logical or numeric expressions. This analysis also ensures that 
deviations to the standards are justified.  

e.  Traceability: The software low-level requirements were developed into Source Code.  
f.  Accuracy and consistency: The objective is to determine the correctness and consistency of the 

Source Code, including stack usage, fixed point arithmetic overflow and resolution, resource 
contention, worst-case execution timing, exception handling, use of non-initialized variables or 
constants, unused variables or constants, and data corruption due to task or interrupt conflicts.  

3.3.5 Software Testing Process 

Testing of avionics software has two complementary objectives. One objective is to demonstrate 
that the software satisfies its requirements. The second objective is to demonstrate, with a high 
degree of confidence that all the errors which could lead to unacceptable failure conditions, as 
determined by the system safety assessment process, have been removed.   
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Figure 4  DO-178B Testing processes 

 
There are 3 types of testing activities: 

 Low-level testing: To verify the implementation of software low-level requirements.  
 Software integration testing: To verify the interrelationships between software 

requirements and components and to verify the implementation of the software 
requirements and software components within the software architecture.  

 Hardware/software integration testing: To verify correct operation of the software in the 
target computer environment.  

 
As shown by Figure 4, DO-178B imposes that all test cases are requirements-based; that means 
that test procedures have to be written from the specifications, not from the code. This is even 
imposed for low-level testing. 
 
Test Coverage Analysis 
Test coverage analysis is a two-step process: 
• Requirements-based test coverage analysis determines how well the requirements-based 

testing covered the software requirements 
• Structural coverage analysis determines which code structures were exercised by the 

requirements-based test procedures. 
 
Structural Coverage Resolution 
If structural coverage analysis reveals structures that were not exercised, resolution is required: 
• If it is due to shortcomings in the test cases, then test cases should be supplemented or test 

procedures changed. 
• If it is due to inadequacies in the requirements, then the requirements must be changed and 

test cases developed and executed. 
• If it is dead code (it cannot be executed, and its presence is an error), then this code should be 

removed, and an analysis performed to assess the effect and the need for re-verification 
• If it is deactivated code (its presence is not an error): 
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o  If it is not intended to be executed in any configuration, then analysis and testing 
should show that the means by which such code could be executed are prevented, 
isolated, or eliminated, 

o If it is only executed in certain configurations, the operational configuration for 
execution of this code should be established and additional test cases should be 
developed to satisfy coverage objectives. 

 
Structural Coverage Criteria 
The structural coverage criteria that have to be achieved depend on the software level: 
• Level C: 100% statement coverage is required, which means that every statement in the 

program has been exercised. 
• Level B: 100% decision coverage is required. That means that every decision has taken all 

possible outcomes at least one (ex: then/else for an if construct) and that every entry and exit 
point in the program has been invoked at least one. 

• Level A: 100% MC/DC (Modified Condition/Decision Coverage) is required for level A 
software, which means that: 

o Every entry and exit point in the program has been invoked at least once. 
o Every decision has taken all possible outcomes. 
o Each condition in a decision has been shown to independently affect that decision’s 

outcome (this is shown by varying just that condition while holding fixed all other 
possible conditions).  

For instance, the fragment: 
If A OR (B AND C) 

Then do something 

Else do something else 

Endif 
requires 4 test cases: 

 
Case A B C Outcome 
1 FALSE FALSE TRUE  FALSE 
2 TRUE  FALSE TRUE  TRUE 
3 FALSE TRUE  TRUE  TRUE 
4 FALSE TRUE  FALSE FALSE 

 

3.4 Why is Traditional Development of Safety-Critical Software so Expensive? 

Traditional development of safety critical software leads to high costs, as shown by the figures 
given in chapter 2. In this section, we give some of the reasons that lead to these costs. We show 
that these costs are not due to DO-178B, but due to the way software is developed. 

3.4.1 Multiple Descriptions 

In a traditional development process, the software is described in several places: 
 System requirements allocated to software. 
 Software high-level requirements. 
 Software low-level requirements. 
 Software source code. 
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At each step, the description of the software is rewritten into another form.  
This rewriting is not only expensive, it is error-prone. There is a major risk to have inconsistencies 
between these different descriptions. This results in a huge amount of effort being devoted to the 
verification of the compliance of each level to the previous level. The purpose of many of the 
activities described in DO-178B is to detect the errors introduced during transformations from one 
written form to another. 

3.4.2 Ambiguity and Lack of Accuracy of Specifications 

Requirements and design specifications are traditionally written in natural language, possibly 
complemented by non-formal figures and diagrams. It is an everyday experience that natural 
language is subject to interpretation, even when it is constrained by requirements standards. Its 
inherent ambiguity can lead to different interpretations depending on the reader.  
This is especially true for the dynamic behavior. For instance, how to interpret several parallel 
sentences containing “before X” or “after Y”? 

3.4.3 Manual Coding 

Coding is the last transformation in the traditional development process.  
It takes as input the last formulation in natural language (or pseudo code). The programmer 
generally has a limited understanding of the system, which makes him vulnerable to ambiguities in 
the specification. 
He produces code, which is difficult/impossible to understand by the author of the requirements. 
In the traditional approach, the combined risk of interpretation error and coding errors is so high 
that a major part of the life cycle’s verification effort is consumed by code testing. 

3.4.4 Late Detection of Specification and Design Errors 

Many specification and design errors are only detected during software integration testing. 
One reason is that the requirements/design specification is often ambiguous and subject to 
interpretation. The other reason is that it is difficult for a human reader to understand details, 
regarding dynamic behavior without being able to exercise it.  In a traditional process, the first 
time one can exercise the software is during integration. This is very late in the process. 
When a specification error can only be detected during the software integration phase, the cost of 
fixing it is much higher than if it had been detected during the specification phase.  

3.4.5 Complexity of Updates 

There are many sources of changes in the software, ranging from bug fixing to function 
improvement or the introduction of new functions.  
When something has to be changed in the software, all products of the software life cycle have to 
be updated consistently and all verification must be performed accordingly. 

3.4.6 The Stakes of Verification Efficiency 

The level of verification for avionics software is much higher than for other commercial software. 
For Level A software, the overall verification cost (including testing) may account for up to 80% 
of the budget [Amey] Verification is also a bottleneck for the project completion. So, clearly any 
change in the speed and/or cost of verification has a major impact on the project time and budget. 
The objective of this paper is to show how to retain a complete and thorough verification process 
but dramatically improve the efficiency of the process. The methods we will describe achieve at 
least the level of quality achieved by traditional means by optimizing the whole development 
process. 
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4 Model Based Development with SCADE Suite 

4.1 What is SCADE Suite? 

4.1.1 A Model Based Development Environment 

SCADE Suite is an environment for the development of safety critical software. 
It supports a model-based development paradigm, as illustrated by Figure 5. 

 The model is the software specification: It is the unique reference in the project. 
 Documentation is automatically generated from the model: It is correct and up-to-date by 

construction. 
 The model can be exercised by simulation, using the same code as the embedded code. 
 Formal proof techniques can be applied to the model to detect corner bugs or prove 

safety properties. 
 Code is automatically generated from the model with the Qualifiable Code Generator: 

The code is correct and up-to-date by construction. 
 

Software

Model

Requirements
& De sign 
Document

Source Code

Proof & 
Graphical Simulation

 
Figure 5 Model-based development with SCADE 

 
SCADE Suite applies the “golden rules”: 
• Share unique, accurate specifications 
• Do things once: Do not rewrite descriptions from one activity to the other, for instance 

between system design and software requirements, between HLR and LLR, LLR and code. 
• Do things right: Detect errors in early stages and/or write “correct-by-construction” 

descriptions. 
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4.1.2 A Qualifiable Development Environment (QDE) 

SCADE Suite enables the saving of a significant amount of verification effort, essentially because 
it supports a “correct-by-construction” process. 
Tools have to be “qualified” when processes described in DO-178B are eliminated, reduced or 
automated (DO-178B, section 12.2). SCADE Suite has been specified and developed with 
qualification objectives. This goes far beyond careful development of the tools. It also requires 
appropriate definition of the modeling techniques, and of the generated code characteristics such 
as traceability and safety. Appendix D provides details about the qualification of the code 
generator. 
The next section shows how SCADE Suite can be used in the development and verification 
process.  

4.1.3 SCADE Suite Position in the Development Flow 

SCADE Suite can be used in the following activities, as shown in green on Figure 6: 

 Definition of High-level and Low-level Requirements: 

o The Editor: Supports the edition, documentation and verification of models. 

o The Simulator: Supports interactive or batch simulation of a model. 

o The Design Verifier: Supports corner bug detection and formal verification of 
requirements. 

o The Simulink to SCADE Gateway: supports translation of discrete time 
Simulink models to SCADE, and S-function generation from SCADE. 

 The Code Generators: Automatically generate C or ADA code from the model. One of 
them (KCG) is qualifiable as a development tool for Level A software. 

 The SCADE-DOORS gateway supports traceability management between SCADE and 
other documents such as requirements or test plans. 
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Figure 6 SCADE Suite position in the DO-178B development processes 
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4.2 SCADE Modeling Techniques 

SCADE Suite uses two specification formalisms familiar to control engineers: block diagrams for 
continuous control and state machines for discrete control. What the synchronous modeling 
techniques of SCADE Suite add is a very rigorous view of these well-known but often 
insufficiently defined formalisms.  This view includes a precise definition of concurrency and a 
proof that all SCADE programs behave deterministically.  

4.2.1 Block Diagrams for Continuous Control 

By continuous control, we mean sampling sensors at regular time intervals, performing signal-
processing computations on their values, and outputting values often using complex mathematical 
formulae. Data is continuously subject to the same transformation.  In SCADE, continuous control 
is graphically specified using block diagrams such as the one depicted in Figure 7. 

 

 
Figure 7 A SCADE Suite block diagram 

 
Boxes compute mathematical functions, filters, and delays, while arrows denote flows of data 
between the boxes.  Data flow between blocks that continuously compute their outputs from their 
inputs.  All blocks compute concurrently, and the blocks only communicate through the flows.  To 
add some flexibility in functioning modes control, some flows may carry Boolean or discrete 
values tested in computational blocks or acting on flow switches. 
SCADE blocks are fully hierarchical: blocks at a description level can themselves be composed of 
smaller blocks interconnected by local flows. In Figure 7, the ExternalConditions block is 
hierarchical, and one can zoom into it with the editor. Hierarchy makes it possible to break design 
complexity by a divide-and-conquer approach and to design reusable library blocks. Because of 
support for hierarchy, the set of primitive blocks can remain very small: there is no need to write 
complex blocks directly in C or ADA, since defining them hierarchically from smaller blocks is 
semantically better, much more readable, and just as efficient. Compared to other block-diagram 
formalisms, hierarchy in SCADE is purely architectural and does not imply complex hierarchical 
evaluation rules: a hierarchical block occurring in a higher-level block is simply replaced by its 
contents, conceptually removing its boundaries. 

4.2.2 Safe State Machines for Discrete Control 

By discrete control we mean changing behavior according to external events originating either 
from discrete sensors and user inputs or from internal program events, e.g. value threshold 
detection.  Discrete control is when the behavior keeps changing, a characteristic of modal human-
machine interface, alarm handling, complex functioning mode handling, or communication 
protocols.  
State machines have been very extensively studied in the last 50 years, and their theory is well-
understood.  However, in practice, they have not been adequate even for medium-size applications, 
since their size and complexity tend to explode very rapidly. For this reason, a richer concept of 
hierarchical state machines has been introduced, the initial one being Statecharts [D. Harel]. The 
Esterel Technologies hierarchical state machines are called Safe State Machines (SSMs), see 
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Figure 8 for an example. These evolved from the Esterel programming language [G. Berry] and 
the SyncCharts state machine [C. André] model. SSMs have proved to be scalable in large 
avionics systems. 

 
Figure 8 Hierarchical and concurrent state machines 

 
SSMs are hierarchical and concurrent. States can be either simple states or macro states, 
themselves recursively containing a full SSM or a concurrent product of SSMs. When a macro 
state is active, so are the SSMs it contains. When a macro state is exited by taking a transition out 
of its boundary, the macro state is exited and all the active SSMs it contains are pre-empted 
whichever state they were in. Concurrent state machines communicate by exchanging signals, 
which may be scoped to the macro state that contains them. 
The definition of SSMs carefully forbids dubious constructs found in other hierarchical state 
machine formalisms: transitions crossing macro state boundaries, transitions that can be taken 
halfway and then backtracked, etc. These are non-modular, semantically ill-defined, and very hard 
to figure out, hence inappropriate for safety-critical designs. Their use is usually not recommended 
by methodological guidelines. 

4.2.3 Mixed Continuous / Discrete Control 

Large applications contain cooperating continuous and discrete control parts.  SCADE Suite makes 
it possible to seamlessly couple both data flow and state machine styles. Most often, one includes 
SSMs into block-diagrams design to compute and propagate functioning modes. Then, the discrete 
signals to which a SSM reacts and which it sends back are simply transformed back-and-forth into 
Boolean data flows in the block diagram. The computation models are fully compatible. 

4.2.4 The Cycle-Based Intuitive Computation Model 

The cycle-based model is a direct computer implementation of the ubiquitous sampling-actuating 
model of Control Engineering. It consists of performing a continuous loop of the form pictured in 
Figure 9. In this loop, there is a strict alternation between environment actions and program 
actions. Once the input sensors are read, the program starts computing the cycle outputs.  During 
that time, the program is blind to environment changes.  When the outputs are ready, or at a given 
time determined by a clock, the output values are fed back to the environment, and the program 
waits for the start of the next cycle. 
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Figure 9 The cycle based model 

 
In a SCADE block diagram specification, each block has a cycle and all blocks act concurrently.  
Blocks can all have the same cycle, or they can have different cycles, which subdivide a master 
cycle.  At each of its cycle, a block reads its inputs and generates its outputs.  If two connected 
blocks A and B have the same cycle, the outputs of A are used by B in the same cycle, unless an 
explicit delay is added between A and B.  This is the essence of the synchronous semantics. 
SSMs have the very same notion of a cycle. For a simple state machine, a cycle consists of 
performing the adequate transition from the current state and outputting the transition output in the 
cycle, if any. Concurrent state machines communicate synchronously with each other, receiving 
the signals sent by other machines and possibly sending signals back. Finally, block diagrams and 
SSMs in the same design also communicate synchronously at each cycle. 
Notice that this cycle-based computation model carefully distinguishes between logical 
concurrency and physical concurrency. The application is described in terms of logically 
concurrent activities, block-diagram or SSMs. Concurrency is resolved at compile-time, and the 
generated code remains standard sequential and deterministic C or ADA code, all contained within 
a very simple subset of these languages. What matters is that the final sequential code behaves 
exactly as the original concurrent specification, which can be formally guaranteed. Notice that 
there is no overhead for communication, which is internally, implemented using well-controlled 
shared variables without any context switching.   

4.2.5 Determinism 

Determinism is a key requirement of most embedded applications.  A system is deterministic if it 
always reacts in the same way to the same inputs occurring with the same timing.  On the contrary, 
a non-deterministic system can react in different ways to the same inputs, actual reaction 
depending on internal choices or computation timings. It is clear that determinism is a must to 
drive a car or a plane: internal computation timings should not interfere with the driving 
algorithms. The plane should not decide by itself to go right or left. The same applies to 
man/machine interface and alarm handling. 
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4.3 The Development Processes with SCADE Suite 

In this section we present how SCADE Suite can be used for development activities. We will 
illustrate this with examples taken from the ACS, a toy example. The verification activities are 
described in the following section. 

4.3.1 The ACS Example 

4.3.1.1 Introduction 

We will illustrate the SCADE Suite development process with a small example: the Altitude 
Control System. 
Note: this example has been derived from an altitude control system produced by the SafeAir 
project1. It is an element of a case study and was intended to be used for training. The original 
specification can be retrieved as a public document from the SafeAir WEB site (www.safeair.org). 
The Altitude Control System (ACS) of the A/C is defined as all the hardware and software 
necessary to control the given 2-dimensional speed/altitude of the A/C. The heart of the ACS is the 
Flight Control Computer (FCC).  
 

FCC Elevator
actuator

Throttle
actuator

Sensors

Pitch stick FCP/FCD

 
Figure 10 The Altitude Control System 

4.3.1.2 Inputs 

The flat list of inputs is summarized in the table below 
name type units range purpose 

Phase_Button bool   Rising edge means switch to next phase 

Mode_Switch bool   True = Manual stick command mode 

Pitch_Cmd real degrees -5 to +20  Pitch Stick command  

Throttle_Command real  0 to 1 Manual throttle command 

Speed_Setpoint real Knots  120-180 Speed setpoint 

Note: the hardware driver ensures that this data is 
updated only when the knob is pressed. 

                                                            
1 The SafeAir project (IST 1999-10913) was partly funded by the European Community. 
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name type units range purpose 

Speed_Meas real  Knots  0-200 A/C velocity 

Alt_Setpoint real feet  1000 to 
40 000 

altitude setpoint  

Note: the hardware driver ensures that this data is 
updated only when the knob is pressed. 

Alt_Meas real  feet  0 to 50 
000 

A/C altitude 

 
The following inputs are grouped into structures: 
Sensors is structured data composed of: 

 Speed_Meas: measured speed. 
 Alt_Meas: measured altitude. 

Pilot_Commands is structured data composed of: 
 Pitch_Cmd (from the pitch stick). 
 Man_throttle Throttle_Command from the pilot throttle stick. 
 Speed_Setpoint from the FCP knob. 
 Alt_Setpoint from the FCP knob. 

 
4.3.1.3 Outputs 

The flat list of outputs is summarized in the table below. 
 

name type units range purpose 

Elevator_cmd real degrees -20 to +20  Commanding the elevator actuator 

Throttle_cmd real  0 to 1  Commanding the throttle actuator 

Alt_Lights enum  Green(0), amber(1), red(2) Indicate altitude threshold 

Spd_Lights enum  Green(0), amber(1), red(2) Indicate speed threshold 

Phase_Lights enum  PARK, T_OFF, M_CRS, LD Indicate flight phase 

Mode_Light bool   True= AUTO 

 
The structure “Status_Lights” groups the following data: 

 Phase_Lights. 
 Mode_Lights. 
 Alt_Lights. 
 Speed_Lights. 

4.3.2 High and Low-Level Requirements Specification 

The starting point for our example are the systems requirements allocated to software (SR1, …, 
SRn). This includes the functional requirements of the software, its performance requirements and 
safety-related requirements. 
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Figure 11 From System to High and Low-level Requirements 

 
Within the requirements process, we may have manual formalization from some of the system 
requirements to high-level requirements described in SCADE. Other high-level requirements are 
not described in SCADE and are still described in a natural language or some other notation.   
More precisely, a system requirement (SRi) may be formalized into several high-level 
requirements (HLRi), as is the case with SR3 that is refined into HLR2 and HLR3. Furthermore, a 
given high-level requirement may participate in several system requirements, as is the case of 
HLR3 with SR3 and SR4. Finally, there may also exist some “derived” high-level requirements that 
are not directly obtained by formalization of a system requirement, but may occur due to 
implementation or safety constraints. 
 
Within the design process, we will only have to consider those high-level requirements that were 
not described in SCADE. For those, we may have a manual translation from high-level 
requirements to low-level requirements expressed in SCADE. Some of the low-level requirements 
may still be expressed in the form of pseudo-code or any other kind of low-level description, as it 
would be typically the case for low-level executive functions close to hardware.  
The documentation of the modules, their interfaces, data types and flows can be generated and 
inserted in the Software Requirements Document. 
 

4.3.2.1 SCADE Artifacts for the High-level Requirements of the ACS 

In this example, the SCADE model developed during the requirements phase serves as a means of 
formalizing the main structures of the software and is a part of the software high-level 
requirements document. The rest of high-level requirements would be text and figures. 
At this stage, the SCADE model is an incomplete model. It will be complemented during the 
design phase. 
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Figure 12 Top level functions and interfaces of the ACS 

 
It formalizes the top-level functions, the interfaces of the system and of its high-level functions, 
and the data flow between those functions. Note that these flows are strongly typed and structured, 
using the data types definitions given below. This will provide a clean framework for the design. 
 

Structured types
TYPE Field name Field type Meaning
Sensors Speed real Measured speed

Alt real Measured altitude
Commands Speed alt Desired speed

Alt real Desired altitude
PhaseMode Pitch real Pitch angle

Throttle real Throttle command
Buttons Phase bool When pressed, go to next phase

Manu bool When pressed, enter manual mode
StatusLights Speed LightColors Speed error warning light

Alt LightColors Altitude error warning light
PhaseMode PARK bool Parking phase

T_OFF_Gnd bool Take off, ground phase
T_OFF_UP1 bool Take off, max climb phase
_T_OFF_UP2 bool Take off, complete climbing
M_CRS bool Mid cruise phase
LD bool Landing phase
Manu bool Manual command mode

Enumerated types
TYPE Case Meaning
LightColors green OK

amber beware
red danger

 
Figure 13 Structured data types 

State machines are used to explicit the states of the system and how it reacts to events. In the 
example below, this corresponds to parking, take off (on ground, 1st phase, 2nd phase), mid cruise, 
and landing. 
 



Efficient Development of Airborne Software with SCADE Suite  

© Esterel Technologies 2003   Page 25 of 49 - 

Park T_OFF_Gnd

T_OFF_Up1

T_OFF_Up2M_CRS

LD

1: NextPhase and 
(Sensors.alt <=0.0) 

and 
(Sensors.speed<=0.0)

1:  (Sensors.speed 
>=90.0)

1: (Sensors.alt 
>=1000.0)

1: NextPhase and 
(Sensors.speed 
>=120.0) and 
(Sensors.alt 
>=3000.0)

1: NextPhase

1: true

 
Figure 14 Main states of the ACS 

 
4.3.2.2 SCADE Artifacts for the Error Display 

It is possible to directly translate some of the system functions into SCADE. For instance, the 
following system requirement defines the color of a light as a function of the altitude error 
(difference between measured altitude and set-point): 
 

|ALT_error| Measured altitude background display 

More than 1000 ft RED 

Between 100 ft and 1000 ft AMBER 

Less than 100 ft GREEN 

Figure 15 Altitude error color code display 

 
The following simple diagram, which factors two similar requirements, could directly express this 
function: one for the altitude, the other for the speed. Note that is typically a matter of 
project/company culture: some would prefer to do that during requirements, others during design. 
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Figure 16 Error color code computation module 

 
4.3.2.3 SCADE Artifacts for the Auto Mode Speed Definition 

Here is a case where a two-step formalization is shown. 
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We had the following system requirement  

 SYSREQ 21: «… automatic (AUTO) operational mode in which the A/C keeps its current 
speed (the value measured and identified upon entrance to this mode) ». 

This sentence is rather complex, and we first decompose it in the HLR document: 
 SWHLR 61: Memorize speed measure upon entrance in AUTO mode as Mspeed. 
 SWHLR 62: Maintain A/C speed at MSpeed during Auto mode. 

By the way, we realize that it would be dangerous to memorize a value that is not a correct for a 
set point. So, we add a derived requirement, which will be fed back to the system design. 

 SWHLR 63: limit the speed value to memorize in the range [120,180]. 
 
Then, during the design activity, we formalize SWHLR61 and SWHLR63 in the following 
SCADE diagram. The speed from the sensors is first limited in the range 120 to 180, and this value 
is ready for memorization. The memorization (MEM block) occurs when the A/C enters (rising 
edge) the Auto mode. 
 

MEM

3000.0
Init Write

1000.0 40000.0
L H.altSensors

Auto
 

Figure 17 Capturing the speed set point for auto mode 

 
4.3.2.4 Filling the Gap between System Design and Software 

For systems containing regulation and/or filtering functions, a model of the system dynamic 
behavior is often developed during the system design phase. This model usually contains 2 parts: 
the controller (ex: an engine speed regulator) and its environment (ex: the engine). The equipment 
implements the controller, and its software implements the functional behavior of this controller. 
Thus, the model of the controller is a requirement specification of the software.  
When a tool such as MATLAB/SimulinkTM is used to describe the controller, its transformation 
into a SCADE model is natural, since they are both based on data flow block diagrams. The 
Simulink Gateway even automates this task to a large extent. This gateway saves rewriting the 
description of the controller when going to software development. 
Going from Simulink to SCADE improves the accuracy of the description to the level required by 
ED-12/DO-178B. In particular, data types and clocks have to be made more accurate. SCADE also 
gives access to formal verification.  
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Figure 18 From system analysis in Simulink™ to software with the SCADE Simulink™ Gateway 

 
Moreover, the user can benefit from the qualified Code Generator: 
• The generated code can be executed in the Simulink model of its environment, to validate its 

behavior in a model of its environment. 
• The generated code can be downloaded to a prototype of the target, or the final target possibly 

with level A quality objectives, as a result of the qualified code generator (see section on code 
generation). 

 
Below is a simple example with a piece of the control loop of the ACS. 
Control engineers have provided the definition of a control loop in the form of control engineering 
block diagrams (Figure 19). 
 

 
Figure 19 Original control law given by control engineers 

 
The translation of the control engineering diagrams to SCADE (Figure 20) is quite easy, either 
manually for small models, or by using the Simulink to SCADE gateway for large models. When 
formalizing in SCADE, it may be necessary to specify details, such as initial conditions to remove 
any remaining ambiguity. 
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Figure 20 Control loop element in SCADE 

4.3.2.5 Benefits of the “Do Things Once” Principle 

The SCADE model formalizes a significant part of the (high and low-levels) requirements. It is 
written and maintained once in the project, and shared among team members. Expensive and error 
prone rewriting is thus avoided, and interpretation errors are minimized. All members of the 
project team, from the specification team to the review and testing team will share this reference.  
This formal definition can even be used as a contractual requirements document with 
subcontractors: basing the activities on an identical, formal definition of the software may save a 
lot of rework, and acceptance testing is faster, using simulation scenarios. 

4.3.2.6 Teamwork and Reuse 

To work efficiently on a large project requires both distribution of the work and consistent 
integration of the pieces developed by each team. 
The SCADE language is modular: There is a clean distinction between interfaces and contents of 
modules (called “nodes” in SCADE) and there are no side effects from one node to another. So, a 
large software model can be split into several smaller SCADE models, with well-defined 
interfaces, thus forming a structured framework for the project. Each team member can work on a 
specific part. At each step, he can verify in a mouse click that he remains consistent with that 
interface. Later, integration of those parts in a larger model can be achieved by linking these 
“projects” in the larger one. At any stage, the SCADE semantic checker verifies the consistency of 
this integration in a mouse click. 
All these data have to be kept under strict version and configuration management control. SCADE 
can be integrated with the customer’s configuration management system via the SCCI interface 
(Microsoft Source Code Control Interface), supported by most commercial configuration 
management systems. 
Reuse is also an important means of improving productivity and consistency in a project or a series 
of projects. SCADE libraries can store definitions of nodes and/or data types, which can be reused 
in several places. These range from basic nodes such as latches or integrators to complex, 
customer specific systems. 

4.3.3 Coding and Integration 

The SCADE Code Generators automatically generate the complete C or ADA code implementing 
the requirements and architecture defined in SCADE. It is not just a generation of skeletons: the 
complete dynamic behavior is implemented. 
Various code generation options can be used to tune the generated code to the users needs; for 
example: 

1) Generate one C function for a node or inline code of that node. 
2) Pass external structured data by copy or by reference. 
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Figure 21 Coding and integration 

Legacy code  
Legacy code can be integrated easily as imported nodes and imported data. 
Scheduling 
The only scheduling code that the user has to write is the periodic call to the SCADE root function, 
typically based on the real time clock. The code generator, based on the data flow, automatically 
computes all of the internal scheduling of the model. It is a deterministic, sequential scheduling of 
the code. There is no overhead due to scheduling and communication, which one would have if the 
model pieces were implemented as tasks managed by an operating system. The generated code is 
both deterministic and efficient. 

void WatchVariable (void)
{_L98_WatchVariable = (WatchedInput - ReferenceInput);

/*#code for node Abs_1 */

if ((_L98_WatchVariable >= (_L98_WatchVariable - _L98_WatchVariable)))

{_L5_WatchVariable = _L98_WatchVariable;

} else { _L5_WatchVariable = (-_L98_WatchVariable);

}
/*#end code for node Abs_1 */

if ((_L5_WatchVariable < LowThresh))

{ _L99_WatchVariable = Green;

} else {_L99_WatchVariable = Amber;

}

if ((_L5_WatchVariable > HighThresh))
{ Color = Red;

} else

{ Color = _L99_WatchVariable;

}/*#end code for node WatchVariable */

}

void WatchVariable (void)
{_L98_WatchVariable = (WatchedInput - ReferenceInput);

/*#code for node Abs_1 */

if ((_L98_WatchVariable >= (_L98_WatchVariable - _L98_WatchVariable)))

{_L5_WatchVariable = _L98_WatchVariable;

} else { _L5_WatchVariable = (-_L98_WatchVariable);

}
/*#end code for node Abs_1 */

if ((_L5_WatchVariable < LowThresh))

{ _L99_WatchVariable = Green;

} else {_L99_WatchVariable = Amber;

}

if ((_L5_WatchVariable > HighThresh))
{ Color = Red;

} else

{ Color = _L99_WatchVariable;

}/*#end code for node WatchVariable */

}

Node Abs is expanded 
(user option).

It is computed before its 
result is used.

Traceable 
variable names

Traceable 
constant names

void WatchVariable (void)
{_L98_WatchVariable = (WatchedInput - ReferenceInput);

/*#code for node Abs_1 */

if ((_L98_WatchVariable >= (_L98_WatchVariable - _L98_WatchVariable)))

{_L5_WatchVariable = _L98_WatchVariable;

} else { _L5_WatchVariable = (-_L98_WatchVariable);

}
/*#end code for node Abs_1 */

if ((_L5_WatchVariable < LowThresh))

{ _L99_WatchVariable = Green;

} else {_L99_WatchVariable = Amber;

}

if ((_L5_WatchVariable > HighThresh))
{ Color = Red;

} else

{ Color = _L99_WatchVariable;

}/*#end code for node WatchVariable */

}

void WatchVariable (void)
{_L98_WatchVariable = (WatchedInput - ReferenceInput);

/*#code for node Abs_1 */

if ((_L98_WatchVariable >= (_L98_WatchVariable - _L98_WatchVariable)))

{_L5_WatchVariable = _L98_WatchVariable;

} else { _L5_WatchVariable = (-_L98_WatchVariable);

}
/*#end code for node Abs_1 */

if ((_L5_WatchVariable < LowThresh))

{ _L99_WatchVariable = Green;

} else {_L99_WatchVariable = Amber;

}

if ((_L5_WatchVariable > HighThresh))
{ Color = Red;

} else

{ Color = _L99_WatchVariable;

}/*#end code for node WatchVariable */

}

Node Abs is expanded 
(user option).

It is computed before its 
result is used.

Traceable 
variable names

Traceable 
constant names

 
Figure 22 Sample generated code 

Safety 
The generated code is safe: there is no pointer arithmetic, no dynamic memory allocation, no 
operating system call; the only loops, which are for delays or array handling have a fixed length. 
The generated code is traceable to the model: nodes, variables, constants are traceable by name 
and/or comments as shown on Figure 22. 
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4.4 The Verification Processes with SCADE Suite 

In this section we describe the verification activities that are performed when using SCADE Suite, 
without detailing the simplified/suppressed verification activities. Appendix C explains how this 
conforms to DO-178B. System level verification/validation activities such as stability of a control 
law are beyond the scope of software validation and of this paper. 

4.4.1 Verification of Requirements Consistency 

First, one must check the consistency of the requirements. The syntactic and semantic checker of 
SCADE Suite performs an in-depth analysis of model consistency, including:  

 Detection of missing definitions. 
 Warnings on unused definitions. 
 Detection of non-initialized variables. 

 Coherence of data types and interfaces. 

 Coherence of  “clocks”, i.e. of production/consumption rates of data. 
It is also possible to add custom verification rules, using the programmable interface of the 
SCADE editor. 

4.4.2 Validation of Requirements with respect to System Requirements 

The SCADE requirements have to be reviewed for conformance with system requirements. The 
SCADE Suite report generator ensures that the documentation is up-to-date. The advanced “find” 
feature of the editor facilitates an in-depth review. 
A requirements management tool such as DOORS may also help in managing traceability with 
other life cycle data, such as textual requirements or test cases. Since SCADE and DOORS are 
integrated, the traceability of SCADE with textual requirements is simple and efficient. 

 
Figure 23 Simulation allows to “play the requirements” 

It is also helpful to exercise dynamically the behavior of that specification, to better understand 
how it behaves. As soon as a SCADE model (or pieces of it) is available, it can be simulated with 
the SCADE simulator. Simulation can be interactive or batch. Scenarios (input/output sequences) 
can be recorded, saved and replayed later on the simulator or on the target. Note that all simulation 
scenarios, like all testing activities, have to be based on the system requirements. 
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4.4.3 Verification of Robustness 

Robustness and safety must be addressed at each level, as explained by ARP 4754. We 
recommend that robustness be addressed differently at the requirements and coding level. 
At the requirements/design level, the specification should explicitly identify and manage 
robustness of the software with respect to invalid input data. This requires techniques such as 
voting, confirmation and range checking. At the requirements level, one should explicitly manage 
the ranges of variables. For instance, one should use generally integrators with a limiter. Or, if 
there is a division, the case where the divider is zero has to be managed explicitly at the 
requirements level, in the context calling the division: the division should only be called when the 
divider is not zero, and the action to be taken when the divider is zero in a foreseeable situation has 
to be defined by the writer of the specification, not by the programmer. 
On the contrary, if an attempt to divide by zero happens at run time in spite of the above-
mentioned design principles, this has to be handled as an abnormal situation, caused by a defect in 
the software specification, or by a hardware failure. The detection of the event can be typically 
part of the arithmetic library (the implementation of that library is generally target dependant). The 
action to be taken (ex: raise an exception and disconnect the computer) has to be defined as a 
global design decision for the computer. 
It is easy to define libraries of robust blocks, such as voters, confirmators and limiters. Their 
presence in the diagrams is very explicit for the reader. It is also recommended to use the same 
numeric data types (in particular fixed point, if the application uses this technique) on the host and 
on the target, with libraries that have the same behavior. 
Requirements analyses and reviews have to include the above-mentioned rules. These rules ensure 
that robustness is effectively managed in the software specifications and in the libraries, rather 
than being spread over the code. 

4.4.4 Verification of the Source Code 

The code generator is a “development tool”, in DO-178B terminology. That means that a failure in 
the code generator may introduce an error in the code that will be embedded.  
As explained in appendix C, the qualification of a tool may reduce the requirement around the 
verification of its output. There are two ways of using a SCADE Code Generator for the 
development of software, and presenting it accordingly to the certification authority: 
a) Unqualified: the code generator is just a way of writing the code more effectively. But no 
reduction of verification is possible. The code is verified as if it was written manually. That means 
among others reading the code and ensuring its structural coverage during testing. 
b) Qualified: the qualification of the SCADE code generator may save or eliminate low-level 
testing and structural coverage. 
Appendix C provides details about the savings on verification activities, and appendix D give 
details about the qualification of the code generator. 

4.4.5 Software and Hardware Integration Testing 

ED-12/DO-178B mandates “Requirements-Based Software Integration Testing.”  
Using the SCADE simulator and Design Verifier for SCADE (from Prover Technologies) for the 
verification of the LLR produces large amounts of requirements-based test scenarios. These 
scenarios are first class material for requirements-based testing on the target, since: 
• They are requirements based. 
• They are consistent with the LLR (by construction). 
• They save rewriting similar test scenarios. 
Note: the scenarios produced by the SCADE simulator and verifier are simple ASCII files which 
can be input to most test environments using simple scripts. 
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4.4.6 The Combined Testing Process 

In practice, we propose to organize the testing process in the following way (Figure 24): 

Application
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Code generated 
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Unit testing

SW Requirements Based
Low-Level Testing
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System Requirements 
Based Testing focus

Application
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Unit testing

 
Figure 24 The combined testing process with KCG 

1) For the functions that are hand-coded in the Source Code language (e.g., library functions 
and/or executives): 

 The user performs classical verification activities (including low-level testing and 
structural coverage analysis at the Source Code level). 

 The Source to Object Code compiler is used in the same version and with the same 
options (no optimization) and in the same execution environment as when it is used to 
compile Source Code obtained from the KCG. 

 Analysis of this Object Code is performed according to CAST Paper P-12 [CAST-12] to 
demonstrate that the object that is not directly traceable to source code is correct. 

2) For the Source Code automatically generated by KCG: 
 The user performs testing activities of a sample of the generated Source Code that 

comprises all used Source Code programming constructs in order to demonstrate that the 
Object Code generated from this Source Code is correct and does not introduce erroneous 
extra code that is not traceable at the Source Code level (as in CAST Paper P-12). 

3) For the whole application:  

 The user performs extensive systems requirements-based software and hardware/software 
integration testing. It is verified at this stage that all systems requirements allocated to 
software are covered by those tests. 

 The stopping criterion is to achieve both coverage of the system requirements and the 
structural coverage of the model (see appendix C). 

We acknowledge that, by specification, KCG uses only a small subset of the general purpose 
Source Code language, with a low-level of complexity (mostly expressions with comparisons, +; - 
etc) and generates very regular code structures. If the combination of all the above activities does 
not detect any error in the object code, then we can have sufficient confidence that the compiler 
does not introduce errors in the code generated by KCG for that application. 
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5 Examples of productivity enhancements 

This chapter shows results obtained by applying the process improvement on industrial projects. 

5.1 Eurocopter EC 135/155 

Eurocopter (EC) is the world leader in civil helicopters and a large manufacturer of military 
helicopters. With four main sites and thirteen subsidiaries around the world, EC has delivered 
more than 11,000 aircraft to 1,700 clients in 132 countries. 
Eurocopter introduced SCADE for the development of autopilots for the EC135 and EC155 civil 
helicopters, done in co-operation with the equipment manufacturer SFIM. These equipments must 
adhere to DO-178B guidelines for Level A. Eurocopter’s primary challenge was to reduce 
development time, certification time, and costs. 
To guarantee coherence in the development of the product range, this collaboration required 
precise formal specifications. By defining common rules for naming and structuring, SCADE 
made it possible to introduce, from the specification phase, detailed and complete information 
allowing unambiguous communication between the Eurocopter and its subcontractors. Eurocopter 
developed and integrated the EC155 autopilot operational functions while SFIM developed the 
equipment management functions. Both Eurocopter and SFIM sites used SCADE as a 
specification and code generation tool. A key benefit of this technique is that it allows simulation 
on a host machine before integration into the target computer, specifications that are better 
validated and more complete. 
The result is  
• 90% of the code could be generated with SCADE. 
• The development time was reduced by 50%, compared to manual coding of an equivalent 

system. 
• JAA certified the equipment at level A. 

5.2 Airbus A340 

Airbus introduced automatic code generation in the late 80’s with in house tools, and there is a 
proven success using this approach with the A340.  
Airbus participated in defining SCADE and introduced SCADE as a successor to their similar in 
house tools. Today, SCADE models are written and exchanged throughout the company and they 
are part of the technical annex of contracts with equipment manufacturers. 
The SCADE KCG Code Generator has been used for the development of the software of the FCSC 
(Flight Control Secondary Computer) of the A340/500. This equipment must comply to DO-178B 
Level A guidelines. The result is the following: 

• The ratio of automatically generated code reached 70%. 
• No coding errors were found in the code generated by SCADE 
• Specification changes were perfectly mastered and the modified code was quickly made 

available, therefore reducing time-to-market. 
• The SCADE KCG Code Generator has passed qualification procedures in January 2002. 
• Airbus measurements showed a reduction of 50% in development cost, and a reduction in 

modification cycle time by a factor 3 to 4, compared to manual coding, by using their in-house 
code generator [Pilarski]. Now, KCG has shown the same efficiency and will be used in other 
programs, such as the A380. 

• SCADE is also expected to bring further benefits in the future, such as formal verification. 
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6 Business benefits  

This chapter analyzes the business benefits of the above described process improvement. 

6.1.1 Addressing the Bottlenecks of Traditional Development 

SCADE Suite addresses the bottlenecks of traditional development: 
 Multiple descriptions: they are replaced by the common model, which is refined and 

shared among project members. 
 Ambiguity and lack of accuracy: being both formal and intuitive, a SCADE model 

prevents interpretation errors. 
 Manual coding: is replaced by automatic coding. 
 Late detection of requirements/design error: the SCADE model (or pieces of it) can be 

readily simulated. 
 Complexity of updates: only the model is updated; documentation and code can be 

updated automatically. 

6.1.2 Time to Market and Cost Reduction with the “Y” Cycle 
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Figure 25 From the V cycle to the Y cycle 

If we take the traditional “V cycle” as a reference, Figure 25 summarizes the time and cost 
savings, depending on the lifecycle: 
• Lifecycle a: Traditional development. 
• Lifecycle b: The Code Generator is just used as a productivity tool; it saves the tasks of 

writing the code, and the cost reduction is about 15% if there are no LLR changes at all, and 
20% if some changes are made. All verification activities have to be performed. 

• Lifecycle c: The Code Generator is qualified as a development tool; compliance of the code 
with the low-level requirements is guaranteed and the corresponding verification activities are 
saved. If the risk of undetected error introduction by the compiler is mastered, the compliance 
of the executable with the low-level requirements is guaranteed. We then shift from the V 
cycle to the “Y cycle”, meaning that the cost of producing the object code and verifying its 
conformance to the requirements is near to zero. 
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Introduction of proof techniques might lead to 10% more savings, as estimated by Airbus 
projections [Pilarski] . This has to be further confirmed at a large scale. 
As an example, the chart below shows potential costs reductions on a typical project. The figures 
concern the part of the application for which SCADE is applicable. Although the effort of writing 
the requirements and design can be reduced (for the same level of detail than in a traditional 
document), we assume that this is compensated by a more detailed description and more 
preparation of test cases at simulation stage. The effort for coding itself is almost completely 
saved. The integration effort is decreased thanks to the higher consistency of the SCADE model 
and of its generated code. When SCADE is used, the verification cost is decreased by 20%, due 
primarily to the verification of the design by the SCADE checking tools. When using KCG, there 
are major supplementary savings: one is the reduction of the “normal” verification, the other is due 
to the savings in the verification of code when correcting a requirement and reflecting this change 
in the implementation. 
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Figure 26 Cost reduction with CG and KCG 

The effect of the Y cycle is not only to reduce direct costs. Reducing the development time leads 
to earlier availability of the product. This is clearly a competitive advantage for the company with 
the first version of an aircraft or equipment on the market. 
This is even truer with new versions: a company has often to build new versions/variants of an 
equipment to adapt to various requirements defined by the customers. The Y cycle dramatically 
decreases the time to build the variants. This may favor the selection of the company offering such 
a shorter response time. 

6.1.3 Higher Reuse Potential 

In the traditional approach, the project produces on one hand a textual description and on the other 
software code. The code is low-level, hard to read and hard to maintain, and often target 
dependant, even if good coding rules have been applied. When new equipment has to be 
developed, it is hard to reuse the old software. 
A SCADE software model is much more functional and target independent. Experience has shown 
that large amounts of SCADE blocks could be reused from one project to another. Libraries of 
functional blocks could be defined in one project and reused in another one. The software could be 
implemented on new targets by just adapting the bodies of the bottom-level library elements, 
without changing the SCADE models. 
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8 Appendix B Acronyms and Glossary 

8.1 Acronyms 

A/C: Aircraft. 
COTS: commercial off-the-shelf. 
DER: Designated Engineering Representative. 
EUROCAE: European Organization for Civil Aviation Equipment . 
FAA: Federal Aviation Administration.  
HLR: High-level Requirement. 
LLR: Low-level Requirement. 
JAA: Joint Aviation Authorities. 
JAR: Joint Aviation Requirements. 
MC/DC: Modified Condition/Decision Coverage. 
RTCA: RTCA, Inc. 
SCADE: Safety Critical Application Development Environment. 
SQA: software quality assurance. 
SW: software. 

8.2 DO-178B Glossary 

Certification - Legal recognition by the certification authority that a product, service, organization 
or person complies with the requirements. Such certification comprises the activity of technically 
checking the product, service, organization or person and the formal recognition of compliance 
with the applicable requirements by issue of a certificate, license, approval or other documents as 
required by national laws and procedures. In particular, certification of a product involves: (a) the 
process of assessing the design of a product to ensure that it complies with a set of standards 
applicable to that type of product so as to demonstrate an acceptable level of safety; (b) the process 
of assessing an individual product to ensure that it conforms with the certified type design; (c) the 
issuance of a certificate required by national laws to declare that compliance or conformity has 
been found with standards in accordance with items (a) or (b) above.  
Certification credit - acceptance by the certification authority that a process. product or 
demonstration satisfies a certification requirement.  
Condition - A Boolean expression containing no Boolean operators.  
Coverage analysis - The process of determining the degree to which a proposed software 
verification process activity satisfies its objective.  
Data coupling - The dependence of a software component on data not exclusively under the 
control of that software component.  
Deactivated code - Executable object code (or data) which by design is either (a) not intended to 
be executed (code) or used (data), for example, a part of a previously developed software 
component, or (b) is only executed (code) or used (data) in certain configurations of the target 
computer environment, for example, code that is enabled by a hardware pin selection or software 
programmed options.  
Dead code - Executable object code (or data) which, as a result of a design error cannot be 
executed (code) or used (data) in a operational configuration of the target computer environment 
and is not traceable to a system or software requirement. An exception is embedded identifiers.  
Decision - A Boolean expression composed of conditions and zero or more Boolean operators. A 
decision without a Boolean operator is a condition. If a condition appears more than once in a 
decision, each occurrence is a distinct condition. 
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Error - With respect to software, a mistake in requirements, design or code.  
Failure - The inability of a system or system component to perform a required function within 
specified limits. A failure may be produced when a fault is encountered.  
Fault - A manifestation of an error in software. A fault, if it occurs, may cause a failure.  
Fault tolerance - The built-in capability of a system to provide continued correct execution in the 
presence of a limited number of hardware or software faults.  
Formal methods - Descriptive notations and analytical methods used to construct, develop and 
reason about mathematical models of system behavior.  
Hardware/software integration - The process of combining the software into the target 
computer.  
High-level requirements - Software requirements developed from analysis of system 
requirements, safety-related requirements, and system architecture.  
Host computer - The computer on which the software is developed.  
Independence - Separation of responsibilities, which ensures the accomplishment of objective 
evaluation. (1) For software verification process activities, independence is achieved when the 
verification activity is performed by a person(s) other than the developer of the item being 
verified, and a tool(s) may be used to achieve an equivalence to the human verification activity. (2) 
For the software quality assurance process, independence also includes the authority to ensure 
corrective action.  
Integral process - A process, which assists the software development, processes and other integral 
processes and, therefore, remains active throughout the software life cycle. The integral processes 
are the software verification process, the software quality assurance process, the software 
configuration management process, and the certification liaison process.  
Low-level requirements - Software requirements derived from high-level requirements, derived 
requirements, and design constraints from which source code can be directly implemented without 
further information.  
Modified Condition/Decision Coverage - Every point of entry and exit in the program has been 
invoked at least once, every condition in a decision in the program has taken all possible outcomes 
at least once, every decision in the program has taken all possible outcomes at least once, and each 
condition in a decision has been shown to independently affect that decision's outcome. A 
condition is shown to independently affect a decision's outcome by varying just that condition 
while holding fixed all other possible conditions.  
Robustness -The extent to which software can continue to operate correctly despite invalid inputs.  
Standard - A rule or basis of comparison used to provide both guidance in and assessment of the 
performance of a given activity or the content of a specified data item.  
Test case - A set of test inputs, execution conditions, and expected results developed for a 
particular objective, such as to exercise a particular program oath or to verify compliance with a 
specific requirement.  
Tool qualification - The process necessary to obtain certification credit for a software tool within 
the context of a specific airborne system.  
Traceability - The evidence of an association between items, such as between process outputs, 
between an output and its originating process, or between a requirement and its implementation.  
Validation -The process of determining that the requirements are the correct requirements and that 
they are complete. The system life cycle process may use software requirements and derived 
requirements in system validation.  
Verification - The evaluation of the results of a process to ensure correctness and consistency with 
respect to the inputs and standards provided to that Process.  
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9 Appendix C Impact of SCADE Suite on Verification 
Activities 

9.1 Scope and Conventions of this Section 

This section provides some additional details about the impact of SCADE Suite on verification. In 
particular, it positions the savings of verification activities in terms of DO-178B, and explains 
why/how SCADE Suite can make certain verification activities easier or even eliminate some of 
them. 
Verification activities are described in section 6 of DO-178B, and their objectives are summarized 
in tables A-3 to A-7. These tables are used in this appendix as reminders for the explanations. We 
also added a column characterizing the potential impact of the use of SCADE Suite on the 
verification activities, with the following conventions: 

 Blank: Means no significant impact. 
 Efficiency: Means a significant efficiency improvement of the activity. 
 Eliminated: Means that the verification activity can be eliminated. 
 Automated: Means that the verification activity can be automated. 

 
Note: the statements of the next sections apply only to the parts modeled with SCADE and 
generated from the SCADE model. 

9.2 Verification of Outputs of the Software Requirements Process 

All SCADE elements will be part of one global model, whether these elements have been written 
during the requirements process or the design process. 
We are in a case where Source Code is generated directly from the model. So, the model elements 
that have been developed as part of the high-level requirements are also considered low-level 
requirements, and the guidelines for low-level requirements also apply to them (DO-178B; Section 
5.0). 
Therefore, we refer the reader to the next section, where the verification of low-level requirements 
is described. 
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9.3 Verification of Outputs of the Software Design Process 

 Objective Impact 
1 Low-level requirements comply with high-level requirements Efficiency 
2 Low-level requirements are accurate and consistent Efficiency 
3 Low-level requirements are compatible with target computer Efficiency 
4 Low-level requirements are verifiable Eliminated 
5  Low-level requirements conform to standards Automated 
6 Low-levels requirements are traceable to high-level requirements Efficiency 
7 Algorithms are accurate Efficiency 
8 Software architecture is compatible with high-level requirements Efficiency 
9 Software architecture is consistent Efficiency 
10 Software architecture is compatible with target computer Efficiency 
11 Software architecture is verifiable Efficiency 
12 Software architecture conforms to standards Automated 
13 Software partitioning integrity is confirmed  

DO-178B Table A-4 

 

Low-level requirements comply with high-level requirements (resp. system requirements) 
The very functional nature of the SCADE notation with block diagrams and state machines makes 
it easy to write SCADE models that reflect the higher level functional requirements. This makes 
the verification of compliance accordingly simple. The same holds for the relationship between 
system requirements and SCADE elements written during the software requirements phase. 
As explained in section 4.5, simulation is a very efficient technique to validate the requirements. 
Formal verification, which could be compared to a kind of exhaustive simulation with respect to 
the properties to be verified, is another means of verifying the compliance of a SCADE model with 
higher-level requirements 

Low-level requirements are accurate and consistent 
SCADE is based on Lustre [Lustre] and inherits its formal semantics [SCADE_Lang]. A SCADE 
model is absolutely accurate and unambiguous. It has the same meaning for all the project 
participants ranging from the specification team to the validation team, thus avoiding interpretation 
errors. A SCADE model is also strictly deterministic, which means that a given input sequence 
from the initial state will always lead to the same output sequence. 

The syntactic and semantic checker of SCADE Suite performs an in depth analysis of model 
consistency, including:  

 Detection of missing definitions. 
 Warnings on unused definitions. 
 Detection of non-initialized variables. 
 Coherence of data types and interfaces. 

 Coherence of “clocks”, i.e. computation and exchange rates between blocks. 

Low-level requirements are compatible with target computer 
The structure of a SCADE model and of its implementation model (the cycle based model) is 
compatible with nearly any computer. The main possible incompatibility concerns the Worst Case 
Execution Time (WCET). The generated code has bounded execution time. By downloading code 
generated from early versions of the model, measurements can be performed early, compared to 
estimates, and refined all along the model development. 
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Low-level requirements are verifiable 
The SCADE language is formal. That means that every requirement expressed in SCADE has a 
precise, unambiguous meaning. For every such requirement, it is possible to answer in an objective 
way “yes” or “no” to the question: “Does this system fulfill this requirement?” 

Low-level requirements conform to standards 
The SCADE notation itself is a standard with precise syntactic and semantic rules. These rules are 
verified by the qualified code generator (a quick check is also available as part of the editor). 
It is also possible to define and verify additional custom rules, with the editor. 

Low-levels requirements are traceable to high-level requirements (resp. system 
requirements) 
There are several, non exclusive ways of managing traceability: 

 From text to SCADE: by using the same functional structure, with similar names for 
functions, states and data. 

 By refining a SCADE model, from one phase to the other (see for example the ACS 
modeling of the top level functions). 

 Using the annotations features of SCADE to reference higher level requirements from 
SCADE elements. 

 Using the DOORS Gateway. This allows analyzing the coverage of the high-level 
requirements by the low-level requirements, and identifying those high-level 
requirements that are not covered. DOORS may also be useful to manage the coverage of 
requirements by test cases. 

Algorithms are accurate 
Regarding logical and temporal aspects, any SCADE model is accurate by construction. 
Concerning numerical aspects, specific design and verification activities are required, as explained 
in section 4.4.3. 

Software architecture is compatible with high-level requirements (resp system requirements) 
The architecture of the generated code is simple. It is a root function calling others sequentially. 
There is no operating system call. The generated code can be included in one operating system 
task, or can even run on a bare computer, with just a real time clock and hardware interface 
interrupt service routines. 

Software architecture is consistent 
The architecture of the software is a tree of nodes, translated to a tree of C function. The code 
generator semantically checks the consistency of the input model and ensures that it is reflected in 
the code. Verifications include checking rates and order of production and use of data. 

Software architecture is compatible with target computer 
The architecture of the software is a tree of nodes, translated to a tree of C function calls. Simple 
user written code such as a real time clock handler calls the root of the tree periodically. 

Software architecture is verifiable 
The model describes the architecture in a formal, verifiable way: which node calls which others, 
when, what data are exchanged between nodes. 

Software architecture conforms to standards 
The software architecture is described with the standard SCADE notation. Conformance to the 
standard is verified by SCADE tools. 

Software partitioning integrity is confirmed 
SCADE code/data cannot harm other code/data, but there is nothing that can protect it from other 
software. Partitioning has to be managed with specific hardware or operating system mechanisms. 
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9.4 Verification of Outputs of the Software Coding and Integration Processes 

 

 Objective Impact 
1 Source Code complies with low-level requirements Eliminated 
2 Source Code complies with software architecture  Eliminated 
3 Source Code is verifiable Eliminated 
4 Source Code conforms to standards Eliminated 
5  Source Code is traceable to low-level requirements Eliminated 
6 Source Code is accurate and consistent Eliminated 
7 Output of software integration process is complete and correct  

DO-178B Table A-5 

 

Source Code complies with low-level requirements 
This is ensured by the qualification of the code generator. 

Source Code complies with software architecture  
This is ensured by the qualification of the code generator. 

Source Code is verifiable 
By specification of the code generator, the generated code reflects the model and is verifiable. The 
qualification of the code generator ensures that this is respected. 

Source Code conforms to standards 
The specification of the code generation defines coding standards. The qualification of the code 
generator ensures that this is respected. 

Source Code is traceable to low-level requirements 
By specification, the generated code has a simple, readable structure, traceable to the model by 
names and by comments. The qualification of the code generator ensures that this is respected. 

Source Code is accurate and consistent 
The specification of the code generator defines accurate and consistent code, reflecting accurate 
and consistent input models. The qualification of the code generator ensures that this is respected. 

Output of software integration process is complete and correct 
No impact of SCADE on verification. 
 



Efficient Development of Airborne Software with SCADE Suite  

© Esterel Technologies 2003   Page 43 of 49 - 

9.5 Testing of Outputs of Integration Process 

 

 Objective Impact 
1 Executable Object Code complies with high-level requirements Efficiency 
2 Executable Object Code is robust with high-level requirements Efficiency 
3 Executable Object Code complies with low-level requirements Efficiency 
4 Executable Object Code is robust with low-level requirements Efficiency 
5  Executable Object Code is compatible with target computer Efficiency 

DO-178B Table A-6 

 
Note: see the combined testing process in chapter 4 
 

Executable Object Code complies with high-level requirements 
During the simulation phase of the SCADE requirements, it is possible to play requirements based 
test cases, and to record the scenarios containing them. These scenarios can be reused during 
integration testing. The combined testing process allows focusing requirements based testing at the 
application level. 

Executable Object Code is robust with high-level requirements 
There are 2 parallel verification streams for robustness: 

 By construction: See section 4.4.3 the design rules and the library. 

 By testing ranges of the input data at the application level. 

Executable Object Code complies with low-level requirements 
During the simulation phase of the SCADE requirements, it is possible to play requirements based 
test cases, and to record those scenarios. These scenarios can be reused during integration testing. 
The combined testing process allows focusing at the application level. 

Executable Object Code is robust with low-level requirements 
There are 2 parallel verification streams: 

 By construction: See section 4.4.3 the design rules and the library. 

 By testing ranges of the input data. 

Executable Object Code is compatible with target computer 
The generated code uses bounded resources. 
Memory usage is limited to static memory and bounded stack. Memory occupation can be 
predicted from compiler/linker maps, and/or measured. 
The Worst Case Execution Time evaluation technique depends on the processor. The simple 
structure of the generated code eases this verification. 
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9.6 Verification of Verification of Process Results 

 

 Objective Impact 
1 Test procedures are correct  
2 Test results are correct and discrepancies explained Efficiency 
3 Test coverage of high-level requirements is achieved Efficiency 
4 Test coverage of low-level requirements is achieved Eliminated 
5  Test coverage of software structure (modified 

condition/decision) is achieved 
Eliminated 

6 Test coverage of software structure (decision coverage) is 
achieved 

Eliminated 

7 Test coverage of software structure (statement coverage) is 
achieved 

Eliminated 

8 Test coverage of software structure (data coupling and control 
coupling) is achieved 

Efficiency 

DO-178B Table A-7 

Test procedures are correct 
In the case where the simulator has been used for requirements-based simulation scenarios, there is 
a lot of material reusable for building test procedures (the simulation input/output files can easily 
be transferred to a test environment). There is a shift of the verification of correctness of test 
procedures to the verification of correctness of simulation scenarios, and the total effort over the 
lifecycle is unchanged. 

Test results are correct and discrepancies explained 
In the case where the simulator has been used for requirements-based simulation scenarios, there is 
a lot of material reusable for building test procedures. If the test environment is open, it is easy to 
retrieve both the inputs and the expected results. 

Test coverage of high-level requirements is achieved 
If the high-level requirements are textual, then the test cases will be based on those requirements. 
Simulation scenarios, covering the high-level requirements should have been built and exercised 
during the design process. These scenarios may be reused during integration testing. 

Similarly, if the high-level requirements are in SCADE, then the reference for test cases should be 
the system requirements. 

Test coverage of low-level requirements is achieved 
This verification by itself is no longer relevant. It has to be replaced by coverage of high-level 
requirements or system requirements. 

Test coverage of software structure is achieved 
Section 6.4.4.3 of DO-178B states that structural coverage may reveal code structures that were 
not analyzed during testing that may be the result of: 

 Shortcomings in requirements-based test cases or procedures. 
 Inadequacies in software requirements. 
 Dead code. 
 Deactivated code. 

We therefore have to examine these four cases: 
 Shortcomings in requirements-based test cases or procedures: KCG being a qualified 

development tool, there is no reason to test the Source Code against the software 
requirements. This point is therefore irrelevant. 
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 Inadequacies in software requirements: There can be problems with the software 
requirement. The testing activity relative to the software requirements that we described 
in this paper will exhibit those problems. We have complemented the usual analyses and 
reviews that are performed at this level by a testing process. We therefore have to 
measure the coverage of the software requirements by the corresponding test suite, as 
explained below. 

 Dead Code and Deactivated Code: KCG cannot introduce code that does not correspond 
to the requirements contained in the input model. The traditional risk of introducing 
unintended code during the coding process no longer exists. The risk of 
dead/deactivated/unintended software requirements still exists, but structural coverage of 
code is not the most suited way to identify them. We propose in the section on Structural 
coverage analysis of the software requirements a systematic way of detecting unintended 
requirements. 

This analysis demonstrates that, provided the fact that we perform the testing activity of the 
software requirements and the corresponding model coverage analysis, structural coverage 
(MC/DC) of the software structure is no longer required when KCG is used. 

Test coverage of software structure (data coupling and control coupling) is achieved 
DO-178B requires that test coverage of the software structure (data and control coupling) is 
achieved and it defines: 

Data coupling – as  “The dependence of a software component on data not exclusively 
under the control of that software component.” 
Control coupling – as  “The manner or degree by which one software component 
influences the execution of another software component.” 

Data coupling 
If we first consider the question of data coupling, it appears that it is a completion check of the 
integration effort that includes verifying: 

 Interfaces between modules. 
 Handling of global data. 
 Input/output buffers sizing. 
 etc 

These verification activities are managed at a higher level. As an example, we are in a situation 
where the interfaces between modules of the software structure are already defined at the model 
level and therefore the completion check may again be done at model level, using the SCADE 
semantic checker. As another example, we may say that project standards enforce rules at model 
level such that global data is not allowed, thus producing Source Code that has no global data. 
Control coupling 
If we now consider the question of control coupling, it appears as a completion check of the 
integration effort that includes verifying:  

 Execution of call sequences. 
 Analysis of scheduling. 
 Analysis of WCET. 
 Etc 

As an example, we are in a situation where the call sequences of the software structure maps the 
ones of the model representing the software requirements that are expressed in the SCADE 
graphical notation and therefore the completion check may again be done at model level, using the 
SCADE semantic checker. 

9.7 Structural coverage analysis of the software requirements (model 
coverage) 

Unintended code cannot be produced by KCG, from intended software requirements. The 
remaining point is the detection of dead/deactivated/unintended software requirements with 
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respect to system requirements. Contrarily to dead code, a “dead requirement” is most often not a 
piece of text that has not been purged. It is more frequently a wanted feature, inhibited by a 
complex chain of dependencies that the requirements writers did not identify. Traditionally, this 
identification could only be achieved by human analysis of the software requirements, where it 
was difficult to analyze all possible dynamic situations. With SCADE Suite, it is possible to run 
system requirements based test cases of the software requirements by using the SCADE simulator. 
We therefore propose to evaluate the coverage of the software requirements in a measurable way. 
The definition of requirements coverage criteria is an emerging topic. The objective is to answer 
the question: “did I exercise every piece of the software requirements during system requirements 
based testing?” (Simulation is considered here to be part of testing). 
As a first example, with block diagrams, the criteria could be the activation of nodes, of selectors, 
and of characteristic inputs/outputs responses for library operators, the definition of these criteria 
being part of the library definition.  For instance the confirmation of an input is one of the 
characteristic events for a confirmation node. 
With state machines, one could typically use state and transition coverage criteria. 
As another example, in the case we are dealing with a block diagram notation, it is possible to 
transpose the classical MC/DC criterion that normally applies to Source Code to these block 
diagrams, as is explained in the tutorial on MC/DC [Chilenski]. This is just one possible approach, 
and it has not been demonstrated that the same criteria should be used for requirements than for 
source code. 

 
Figure 27 Simulation of the color computation function 
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Figure 28 Validation of the color computation function 

For the example of Figure 27, we may characterize the test cases given by Figure 28 in the 
following manner: 

 Cases 1, 3 and 5 cover the block diagrams from a strict MC/DC criterion. 
 Cases 2 and 4 are added for checking the accuracy of the comparator. 
 Cases 6 and 7 are added to show correctness of absolute value function and are beyond 

the coverage analysis of the current block diagram. 
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Structural coverage analysis of software requirements, although not required, is a plus of our 
methodology, which will help in identifying dead requirements. This was not possible in a more 
traditional setting because, when one is dealing with informal requirements. 

9.8 Summary of verification of verification activities 

Figure 29 summarizes the shift in verification and verification of verification activities, from 
traditional development to SCADE Suite based development: 

 On the left, with the traditional process: 
o Verification of software requirements is performed by reviews and analyses. 
o There are no precise criteria to verify the verification of the requirements 

verification. 
o Code is verified by testing and analyses. 
o Testing is verified by MC/DC coverage. 

 On the right, with SCADE Suite: 
o Verification of software requirements is enforced by simulation, since the 

requirements are executable. 

Verification of requirements verification is based on structural coverage of requirements (model 
coverage). 

o Verification of the code is suppressed, as a consequence of KCG qualification. 
o Verification of the suppressed testing is no longer relevant. 
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Figure 29 Verification of verification 
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10 Appendix D: Qualification of the Code Generator 

10.1 What does Qualification mean and imply? 

Section 12.2 of ED-12/DO-178B states that qualification of a tool is needed when ED-12/DO-
178B processes “are eliminated, reduced, or automated by the use of a software tool, without its 
output being verified as specified in section 6.”  
The FAA notice number 8110.91 provides further explanations regarding tool qualification: 
• ED-12/DO-178B defines verification tools as “tools that cannot introduce errors, but may fail 

to detect them.” The following are examples of verification tools: 
a) A tool that automates the comparison of various software products against some 

standard(s). 
b) A tool that generates test procedures and cases from the requirements. 
c) A tool that automatically runs the tests and determines pass/fail status. 
d) A tool that tracks the test process and reports if the desired structural coverage has been 

achieved. 
  

• ED-12/DO-178B defines development tools as “tools whose output is part of the airborne 
software and thus can introduce errors.” If there is a possibility that a tool can generate an 
error in the airborne software that would not be detected, then the tool cannot be treated as a 
verification tool. An, example of this would be a tool that instrumented the code for testing 
and then removed the instrumentation code after the tests were completed. If there was no 
further verification of the tool’s output, then this tool could have altered the original code in 
some unknown way. Typically, the original code prior to instrumentation is what is used in the 
product. This example is included to demonstrate that tools used during verification are not 
necessarily verification tools.  The effect on the final product must be assessed to determine 
the tool’s classification 

Section 12.2.1 states that: 
a. If a software development tool is to be qualified, the software development processes for the 
tool should satisfy the same objectives as the software development processes of airborne 
software.  
b. The software level assigned to the tool should be the same as that for the airborne software it 
produces, unless the applicant can justify a reduction in software level of the tool to the 
certification authority.  

 
In summary, the user has to make sure that if he intends to use a tool, that tool has been developed 
in such a way that it can be qualified for its intended role (verification or development) and the 
safety level of the target software. Note that qualification is on a “per project” basis, although it is 
usually simpler and faster to re-qualify a tool in a context similar to the one it has already been 
qualified. 
 

10.2 Prequalification of KCG as a Development Tool 

The SCADE Qualifiable Code Generator (KCG) has been developed in such a way that it is “pre 
qualified” which means that it is ready for qualification on specific projects (remember that 
“qualification” is on a per project basis). 
Safety objectives for Level A have been assigned to the tool, and its development has been 
conducted in accordance with these objectives, for instance: 

 PSAC (Plan for Software Aspects of Certification) has been written before starting 
development. 
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 Analyses and reviews have been conducted in the same way as for embedded software. 
 MC/DC coverage has been achieved. 

 

10.3 Qualification Data 

Qualification data are provided with KCG. Their purpose is to provide the data necessary to 
qualify the usage of SCADE KCG on specific projects. 
The table below shows the documents that are required by the authorities and must be available 
upon request. The KCG qualification kit includes those that are listed as “delivered”. Those listed 
as “accessible” are available to the authorities upon request at the Esterel Technologies premises.  

Data 

FAA 
requirement 
N8810.91 

KCG 
package 

DO-178B Reference 

Tool Qualification Plan Submit Delivered 12.2.3.a(1), 12.2.3.1, & 
12.2.4 

Tool Operational Requirements 
(see detail below) 

Available Delivered 12.2.3.c(2) & 12.2.3.2 

Tool Accomplishment Summary Submit Delivered 12.2.3.c(3) & 12.2.4 
Tool Verification Results Available Accessible 12.2.3.c 
Tool Qualification Development 
data (e.g., design, code, test cases 
and procedures) 

Available Accessible 12.2.3.c 

 
 

Figure 30 Qualification data of the code generator 

 
The meaning of the data is the following: 
 
Tool Qualification Plan:  Describes the tool qualification process 
 
Tool Operational Requirements:  Describes the KCG specification. It is composed of the 
following documents: 

•Reference Manual of the SCADE language. 
•Software Specifications of SCADE/KCG. 

Tool Validation Plan:  Description of verification procedures 
Tool Verification Results:  Results of tests, reviews and analyses 
 
Tool Accomplishment Summary:  Summarizes and concludes what has been achieved, DO-

178B Level A objectives, usage conditions, possible limitations 
Tool Configuration Index:  Identifies the configuration of the tool and its components 
 


